Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system.Macrophage polarization plays an important role in the pat...Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system.Macrophage polarization plays an important role in the pathogenesis of experimental autoimmune encephalomyelitis,a traditional experimental model of multiple sclerosis.This study investigated the effect of Fasudil on macrophages and examined the therapeutic potential of Fasudil-modified macrophages in experimental autoimmune encephalomyelitis.We found that Fasudil induced the conversion of macrophages from the pro-inflammatory M1 type to the anti-inflammatory M2 type,as shown by reduced expression of inducible nitric oxide synthase/nitric oxide,interleukin-12,and CD16/32 and increased expression of arginase-1,interleukin-10,CD14,and CD206,which was linked to inhibition of Rho kinase activity,decreased expression of toll-like receptors,nuclear factor-κB,and components of the mitogen-activated protein kinase signaling pathway,and generation of the pro-inflammatory cytokines tumor necrosis factor-α,interleukin-1β,and interleukin-6.Crucially,Fasudil-modified macrophages effectively decreased the impact of experimental autoimmune encephalomyelitis,resulting in later onset of disease,lower symptom scores,less weight loss,and reduced demyelination compared with unmodified macrophages.In addition,Fasudil-modified macrophages decreased interleukin-17 expression on CD4^(+)T cells and CD16/32,inducible nitric oxide synthase,and interleukin-12 expression on F4/80^(+)macrophages,as well as increasing interleukin-10 expression on CD4^(+)T cells and arginase-1,CD206,and interleukin-10 expression on F4/80^(+)macrophages,which improved immune regulation and reduced inflammation.These findings suggest that Fasudil-modified macrophages may help treat experimental autoimmune encephalomyelitis by inducing M2 macrophage polarization and inhibiting the inflammatory response,thereby providing new insight into cell immunotherapy for multiple sclerosis.展开更多
The transcription factor nuclear factor κB(NF-κB) plays major roles in inflammatory diseases through regulation of inflammation and cell viability.Multiple sclerosis(MS) is a chronic inflammatory demyelinating a...The transcription factor nuclear factor κB(NF-κB) plays major roles in inflammatory diseases through regulation of inflammation and cell viability.Multiple sclerosis(MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system(CNS).It has been shown that NF-κB is activated in multiple cell types in the CNS of MS patients,including T cells,microglia/macrophages,astrocytes,oligodendrocytes,and neurons.Interestingly,data from animal model studies,particularly studies of experimental autoimmune encephalomyelitis,have suggested that NF-κB activation in these individual cell types has distinct effects on the development of MS.In this review,we will cover the current literature on NF-κB and the evidence for its role in the development of MS and its animal model experimental autoimmune encephalomyelitis.展开更多
Multiple sclerosis is an autoimmune neurodegenerative disease of the central nervous system characterized by pronounced inflammatory infiltrates entering the brain,spinal cord and optic nerve leading to demyelination....Multiple sclerosis is an autoimmune neurodegenerative disease of the central nervous system characterized by pronounced inflammatory infiltrates entering the brain,spinal cord and optic nerve leading to demyelination.Focal demyelination is associated with relapsing-remitting multiple sclerosis,while progressive forms of the disease show axonal degeneration and neuronal loss.The tests currently used in the clinical diagnosis and management of multiple sclerosis have limitations due to specificity and sensitivity.MicroRNAs(miRNAs)are dysregulated in many diseases and disorders including demyelinating and neuroinflammatory diseases.A review of recent studies with the experimental autoimmune encephalomyelitis animal model(mostly female mice 6–12 weeks of age)has confirmed miRNAs as biomarkers of experimental autoimmune encephalomyelitis disease and importantly at the pre-onset(asymptomatic)stage when assessed in blood plasma and urine exosomes,and spinal cord tissue.The expression of certain miRNAs was also dysregulated at the onset and peak of disease in blood plasma and urine exosomes,brain and spinal cord tissue,and at the post-peak(chronic)stage of experimental autoimmune encephalomyelitis disease in spinal cord tissue.Therapies using miRNA mimics or inhibitors were found to delay the induction and alleviate the severity of experimental autoimmune encephalomyelitis disease.Interestingly,experimental autoimmune encephalomyelitis disease severity was reduced by overexpression of miR-146a,miR-23b,miR-497,miR-26a,and miR-20b,or by suppression of miR-182,miR-181c,miR-223,miR-155,and miR-873.Further studies are warranted on determining more fully miRNA profiles in blood plasma and urine exosomes of experimental autoimmune encephalomyelitis animals since they could serve as biomarkers of asymptomatic multiple sclerosis and disease course.Additionally,studies should be performed with male mice of a similar age,and with aged male and female mice.展开更多
Sinomenine is a bioactive alkaloid isolated from the Chinese medicinal plant Sinomenium acutum. It is widely used as an immunosuppressive drug for treating rheumatic and arthritic diseases. In our previous studies, we...Sinomenine is a bioactive alkaloid isolated from the Chinese medicinal plant Sinomenium acutum. It is widely used as an immunosuppressive drug for treating rheumatic and arthritic diseases. In our previous studies, we found that sinomenine reduced cellular infiltration within the spinal cord and alleviated experimental autoimmune encephalomyelitis (EAE) in rats. In this study, we further investigated the mechanisms of sinomenine treatment in EAE rats. In EAE rats, treatment with sinomenine exerted an anti-inducible NO synthase (anti-iNOS) effect, which is related to the reductions of Thl cytokine interferon-y (IFN-7) and its transcription factor, T-bet, in spinal cords. Moreover, sinomenine treatment of splenocytes stimulated with anti-CD3 antibody and recombinant rat in- terleukin 12 reduced the expression of T-bet and IFN-y in vitro and also reduced the capability of supernatants of splenocyte culture to induce iNOS expression by primary astrocytes. However, sinomenine had no direct inhibito- ry effect on iNOS produced by astrocytes cultured with IFN-y and tumor necrosis factor α in vitro. In conclusion, the anti-iNOS effect of sinomenine on EAE is mediated via the suppression of T-bet/IFN-y pathway.展开更多
· AIM: To determine the effects of rapamycin on experimental autoimmune uveoretinitis(EAU) and investigate of role of rapamycin on T cell subsets in the disease.·METHODS: EAU was induced in rats using peptid...· AIM: To determine the effects of rapamycin on experimental autoimmune uveoretinitis(EAU) and investigate of role of rapamycin on T cell subsets in the disease.·METHODS: EAU was induced in rats using peptides1169 to 1191 of the interphotoreceptor binding protein(IRBP). Rapamycin(0.2 mg/kg/d) was administrated by intraperitoneal injection for a consecutive 7d after immunization. Th1/Th2/Th17 cytokines, TGF-β1, and IL-6produced by lymphocyteswere measured by ELISA, while Th17 cells and CD4 +CD25 + regulatory T cells(Tregs)from rat spleen were detected by flow cytometry.·RESULTS: Intraperitoneal treatment immediately after immunization dramatically ameliorated the clinical course of EAU. Clinical responses were associated with reduced retinal inflammatory cell infiltration and tissue destruction. Rapamycin induced suppression of Th1/Th2/Th17 cytokines, including IFN-γ, IL-2, IL-17, IL-4, and IL-10 release from T lymphocytes of EAU rats, in vitro.Rapamycin also significantly increased TGF-β1production but had no effect on IL-6 productionof T lymphocytes from EAU rats in vitro. Furthermore,rapamycin decreased the ratio of Th17 cells/CD4 +T cells and upregulated Tregs in EAU, as detected by flow cytometry.·CONCLUSION: Rapamycin effectively interferes with T cell mediated autoimmune uveitis by inhibiting antigen-specific T cell functions and enhancing Tregs in EAU.Rapamycin is a promising new alternative as an adjunct corticosteroid-sparing agent for treating uveitis.展开更多
Emodin,a substance extracted from herbs such as rhubarb,has a protective effect on the central nervous system.However,the potential therapeutic effect of emodin in the context of multiple sclerosis remains unknown.In ...Emodin,a substance extracted from herbs such as rhubarb,has a protective effect on the central nervous system.However,the potential therapeutic effect of emodin in the context of multiple sclerosis remains unknown.In this study,a rat model of experimental autoimmune encephalomyelitis was established by immune induction to simulate multiple sclerosis,and the rats were intraperitoneally injected with emodin(20 mg/kg/d)from the day of immune induction until they were sacrificed.In this model,the nucleotide-binding domain-like receptor family pyrin domain containing 3(NLRP3)inflammasome and the microglia exacerbated neuroinflammation,playing an important role in the development of multiple sclerosis.In addition,silent information regulator of transcription 1(SIRT1)/peroxisome proliferator-activated receptor-alpha coactivator(PGC-1α)was found to inhibit activation of the NLRP3 inflammasome,and SIRT1 activation reduced disease severity in experimental autoimmune encephalomyelitis.Furthermore,treatment with emodin decreased body weight loss and neurobehavioral deficits,alleviated inflammatory cell infiltration and demyelination,reduced the expression of inflammatory cytokines,inhibited microglial aggregation and activation,decreased the levels of NLRP3 signaling pathway molecules,and increased the expression of SIRT1 and PGC-1α.These findings suggest that emodin improves the symptoms of experimental autoimmune encephalomyelitis,possibly through regulating the SIRT1/PGC-1α/NLRP3 signaling pathway and inhibiting microglial inflammation.These findings provide experimental evidence for treatment of multiple sclerosis with emodin,enlarging the scope of clinical application for emodin.展开更多
AIM:To test the therapeutic effects of delayed treatment of mesenchymal stem cells(MSCs) in recurrent experimental autoimmune uveitis(r EAU).METHODS: The efficacy of different regimens of MSC administration in r...AIM:To test the therapeutic effects of delayed treatment of mesenchymal stem cells(MSCs) in recurrent experimental autoimmune uveitis(r EAU).METHODS: The efficacy of different regimens of MSC administration in r EAU were tested by evaluation of clinical and pathological intraocular inflammation,as well as retinal structural and functional integrity using optical coherence tomography(OCT) and electroretinogram(ERG).The retinal sections were also immunostained with antibodies to glial fibrillary acidic protein(GFAP)and rhodopsin(RHO). RESULTS: Delayed treatment of MSCs effectively alleviated the severity of intraocular inflammation with relative intact of outer retinal structure and function.Moreover,double therapies with longer interval led to an even better clinical evaluation,as well as a trend of decrease in relapse and amelioration of retinal function.MSC therapies also effectively reduced GFAP expression and increased RHO expression in the retina.CONCLUSION: MSC administration can effectively treat developed diseases of rEAU,and multiple therapies can provide additional therapeutic benefits.展开更多
Studies have demonstrated that amyloid precursor protein (APP) expression increases in multiple sclerosis tissues during acutely and chronically active stages. To determine the relationship between axonal injury and...Studies have demonstrated that amyloid precursor protein (APP) expression increases in multiple sclerosis tissues during acutely and chronically active stages. To determine the relationship between axonal injury and regeneration in multiple sclerosis, an animal model of experimental autoimmune encephalomyelitis was induced using different doses of myelin basic protein peptide. APP and growth-associated protein 43 (GAP-43), which is considered a specific marker of neural regeneration, were assessed by western blot analysis. Expression of APP and GAP-43, as well as the correlation between these two proteins, in brain white matter and spinal cord tissues of experimental autoimmune encephalomyelitis rats at different pathological stages was analyzed. Results showed that APP and GAP-43 expression increased during the acute stage and decreased during remission, with a positive correlation between APP and GAP-43 expression in brain white matter and spinal cord tissues. These results suggest that APP and GAP-43 could provide nutritional and protective effects on damaged neurons.展开更多
Myelin-associated inhibitory factors within the central nervous system(CNS) are considered to be one of the main obstacles for axonal regeneration following disease or injury. The nogo receptor 1(NgR1) has been we...Myelin-associated inhibitory factors within the central nervous system(CNS) are considered to be one of the main obstacles for axonal regeneration following disease or injury. The nogo receptor 1(NgR1) has been well documented to play a key role in limiting axonal regrowth in the injured and diseased mammalian CNS. However, the role of nogo receptor in immune cell activation during CNS inflammation is yet to be mechanistically elucidated. Microglia/macrophages are immune cells that are regarded as pathogenic contributors to inflammatory demyelinating lesions in multiple sclerosis(MS). In this study, the animal model of MS, experimental autoimmune encephalomyelitis(EAE) was induced in ngr1^+/+ and ngr1^–/– female mice following injection with the myelin oligodendrocyte glycoprotein(MOG_(35–55)) peptide. A fatemap analysis of microglia/macrophages was performed throughout spinal cord sections of EAE-induced mice at clinical scores of 0, 1, 2 and 3, respectively(increasing locomotor disability) from both genotypes, using the CD11 b and Iba1 cell markers. Western immunoblotting using lysates from isolated spinal cord microglia/macrophages, along with immunohistochemistry and flow cytometric analysis, was performed to demonstrate the expression of nogo receptor and its two homologs during EAE progression. Myelin protein engulfment during EAE progression in ngr1^+/+ and ngr1^–/– mice was demonstrated by western immunblotting of lysates from isolated spinal cord microglia/macrophages, detecting levels of Nogo-A and MOG. The numbers of M1 and M2 microglia/macrophage phenotypes present in the spinal cords of EAE-induced ngr1^+/+ and ngr1^–/– mice, were assessed by flow cytometric analysis using CD38 and Erg-2 markers. A significant difference in microglia/macrophage numbers between ngr1^+/+ and ngr1^–/– mice was identified during the progression of the clinical symptoms of EAE, in the white versus gray matter regions of the spinal cord. This difference was unrelated to the expression of Ng R on these macrophage/microglial cells. We have identified that as EAE progresses, the phagocytic activity of microglia/macrophages with myelin debris, in ngr1^–/– mice, was enhanced. Moreover, we show a modulation from a predominant M1-pathogenic to the M2-neurotrophic cell phenotype in the ngr1^–/– mice during EAE progression. These findings suggest that CNS-specific macrophages and microglia of ngr1^–/– mice may exhibit an enhanced capacity to clear inhibitory molecules that are sequestered in inflammatory lesions.展开更多
Zuogui pills have been shown to attenuate the inflammatory reaction in a rat model of experimental autoimmune encephalomyelitis (EAE). The present study attempted to investigate the pathology underlying the influenc...Zuogui pills have been shown to attenuate the inflammatory reaction in a rat model of experimental autoimmune encephalomyelitis (EAE). The present study attempted to investigate the pathology underlying the influence of Zuogui pills on myelinolysis in EAE rats. Hematoxylin-eosin and Luxol fast blue staining showed that the myelinolysis foci in the cerebrum, cerebellum, brain stem, and the spinal cord of EAE rats were significantly decreased, along with serum myelin basic protein content following treatment with Zuogui pills.展开更多
α-Galactosylceramide (u-GC) is widely known to activate invariant natural killer T (iNKT) cells to suppress my- elin antigen-specific Thl responses, protecting susceptible mice against experimental antoimmune enc...α-Galactosylceramide (u-GC) is widely known to activate invariant natural killer T (iNKT) cells to suppress my- elin antigen-specific Thl responses, protecting susceptible mice against experimental antoimmune encephalomyelitis 0EAE). Here, we demonstrate an unexpected finding that high doses of α-GC exacerbated, rather than ameliorated, EAE. Similar results were observed when MOG35.ss-specific T cells treated with high-dose α-GC were transferred into naive syngeneic recipient mice. Further study showed that high doses of a-GC directly enhance the Thl7 and Thl re- sponse by activation of CD4+CD44+ memory T cells through phosphorylation of STAT3 and activation of NF-kB. Un- like the activation of iNKT cells by low doses of a-GC, high doses of a-GC directly interacted with CDld expressed on T ceils and activated Thl7 and Thl cells. Furthermore, antigen-presenting cells (APCs) predominantly express CDldl, whereas the majority of CD4~ T cells express CDld2. Knockdown of CDldl or CDld2 gene expression by RNAi interfered with the activation of iNKT or Thl7/Thl cells, respectively. Therefore, α-GC treatment could im- prove or worsen EAE by engaging either APCs or Thl7/Thl cells depending on the dose used.展开更多
AIM:To determine whether gypenosides have protective effects in experimental autoimmune optic neuritis(EAON).METHODS:Mice were randomly divided into seven groups:control group,model group,three different density ...AIM:To determine whether gypenosides have protective effects in experimental autoimmune optic neuritis(EAON).METHODS:Mice were randomly divided into seven groups:control group,model group,three different density gypenosides monotherapy,methylprednisolone monotherapy,combination of gypenosides and methylprednisolone group.The control group was subcutaneously injected with oil emulsion adjuvant and all other groups were subcutaneously immunized with an emulsified mixture of myelin oligodendrocyte glycoprotein(MOG) 35-55 peptide to induce EAON.Mice in the gypenosides groups were administered injections daily with three concentrations(15 mg/kg,30 mg/kg,45 mg/kg) of gypenosides respectively.Mice in the methylprednisolone group and the combination treatment group were injected daily with methylprednisolone(20 mg/kg) or methylprednisolone(20 mg/kg) + gypenosides(30 mg/kg),respectively.After MOG immunization,visual evoked potential(VEP),optical coherence tomography(OCT),and histopathologic examination were performed at 14,20,30,and 40 d post-inoculation(p.i.).All results were expressed as mean±SEM.The data were evaluated by oneway ANOVA followed by Tukey or Games-Howell test.RESULTS:Compared with the control group,p2 latency was prolonged in the model group(P=0.041).Combination treatment can alleviated the change in VEP at 20 d p.i.(P=0.012).Average peripapillary retinal nerve fiber layer(RNFL) thickness was reduced in the model group(P= 0.000,30d;P=0.000,40d) and gypenosides treatment remarkably diminished the degree of RNFL degenerationat 30 d and 40 d p.i(P=0.000,30d;P=0.000,40d).The pathomorphological results showed a decrease in demyelination(P=0.020) and inflammatory reactions in the combination group compared with the model group(20d p.i.).Gypenosides treatment also alleviated the degree of axonal loss(40d p.i.)(P=0.003).CONCLUSION:Treatment with gypenosides exerts protective effects on retinal nerve fibers and axons in EAON.When combined with gypenosides,methylprednisolone reduces demyelination in the acute stage of EAON.展开更多
BACKGROUND:Previous studies have focused on the correlation between Nogo-A expression and multiple sclerosis or between Nogo-A receptor (NgR) expression and multiple sclerosis in the central nervous system. Express...BACKGROUND:Previous studies have focused on the correlation between Nogo-A expression and multiple sclerosis or between Nogo-A receptor (NgR) expression and multiple sclerosis in the central nervous system. Expression patterns of Nogo-A and NgR remain poorly understood in rat models of experimental autoimmune encephalomyelitis (EAE).OBJECTIVE:To observe dynamic changes in Nogo-A and NgR protein expression, and to verify the correlation between Nogo-A and NgR protein, as well as expression patterns at various time points, in periventricular tissue of EAE rats.DESIGN, TIME AND SETrlNG:A neuroimmunological, randomized, controlled experiment was performed at the Clinical Institute of Hunan People's Hospital of China from September to November 2008.MATERIALS:Immunohistochemistry (streptavidin-biotin-peroxidase complex method) kit was purchased from Boster, China.METHODS:A total of 60 female, Wistar rats, aged 6-8 weeks, ware randomly assigned to EAE and control groups (n = 30, respectively). Guinea pig spinal cord homogenate, self-made complete Freund's adjuvant (0.2 mL/100 g), and pertussis vaccine (0.2 mL) were subcutaneously injected into the hindlimb foot pad of rats from the EAE group to create rat models of EAE. Complete Freund's adjuvant (0.2 mL) was infused into rats from the control group.MAIN OUTCOME MEASURES:Nogo-A and NgR protein expression was determined in periventricular white matter using immunohistochemical methods. Neurological scores ware determined in all rats.RESULTS:Rats from the EAE group developed acute-onset EAE following immunization. The pathogenetic symptoms reached a peak on day 15, and neurological scores ware also greatest at this time point. Neurological scores decreased with recovery of the illness. Nogo-A was shown to be expressed in neuronal cells and oligodendrocytes, and expression increased 11 days after immunization (P 〈 0.01), decreased by day 13 (P 〈 0.01), and then increased again by day 15. Nogo-A expression remained greater in the EAE group compared with the control group at day 30 (P 〈 0.01). In the EAE group, NgR protein was primarily expressed on the surface of neuronal bodies and axons. NgR expression increased 13-18 days after immunization (P 〈 0.01 or P 〈 0.05).CONCLUSION:Nogo-A and NgR protein expression altered with disease course in periventdcular white matter of EAE rats. Results suggested that Nogo-A and NgR were involved in EAE occurrence.展开更多
This study investigated the effects of Yishendaluo decoction on the loss of blood-brain barrier integrity in mice exhibiting experimental autoimmune encephalomyelitis.To this end,we used real-time fluorescent quantita...This study investigated the effects of Yishendaluo decoction on the loss of blood-brain barrier integrity in mice exhibiting experimental autoimmune encephalomyelitis.To this end,we used real-time fluorescent quantitative PCR to measure the levels of mRNAs specific to the T cell markers CD4 and CD8,and the monocyte marker CD11b.In addition,we used Evans blue dye extravasation in the spinal cord and brain tissues to assess blood-brain barrier permeability.The results indicated that an increase in blood-brain barrier permeability was associated with an increase in CD4,CD8 and CD11b mRNA expression in experimental autoimmune encephalomyelitis mice.Yishendaluo decoction administration significantly reversed inflammatory cell accumulation in cerebral tissues of experimental autoimmune encephalomyelitis mice.展开更多
The present study established a chronic experimental autoimmune encephalomyelitis model in C57BL/6 mice induced by myelin oligodendrocyte glycoprotein peptides and complete Freund's adjuvant. Onset latency was 12 day...The present study established a chronic experimental autoimmune encephalomyelitis model in C57BL/6 mice induced by myelin oligodendrocyte glycoprotein peptides and complete Freund's adjuvant. Onset latency was 12 days, with an incidence rate of 100%. Neuropathological characteristics included perivascular inflammatory cell infiltration, demyelination, neuronal degeneration, and axonal damage within cerebral and myelic white matter. Electron microscopy revealed swollen mitochondria, complete organ disappearance, and fused or broken myelin sheath structure, which were accompanied by myelin sheath reconstruction. Moreover, axonal damage was not consistent with demyelination distribution, and severity of axonal damage did not correlate with demyelination. Results suggested that axonal damage in an experimental autoimmune encephalomyelitis model is not secondary to inflammatory demyelination.展开更多
Myasthenia gravis is an autoimmune disorder in which antibodies have been shown to form against the nicotinic acetylcholine nicotinic postsynaptic receptors located at the neuromuscular junction."Warming yang and inv...Myasthenia gravis is an autoimmune disorder in which antibodies have been shown to form against the nicotinic acetylcholine nicotinic postsynaptic receptors located at the neuromuscular junction."Warming yang and invigorating qi" acupuncture treatment has been shown to reduce serum inflammatory cytokine expression and increase transforming growth factor beta expression in rats with experimental autoimmune myasthenia gravis.However,few studies have addressed the effects of this type of acupuncture on the acetylcholine receptors at the neuromuscular junction.Here,we used confocal laser scanning microscopy to examine the area and density of immunoreactivity for an antibody to the nicotinic acetylcholine receptor at the neuromuscular junction in the phrenic nerve of rats with experimental autoimmune myasthenia gravis following "warming yang and invigorating qi" acupuncture therapy.Needles were inserted at acupressure points Shousanli(LI10),Zusanli(ST36),Pishu(BL20),and Shenshu(BL23) once daily for 7 consecutive days.The treatment was repeated after 1 day of rest.We found that area and the integrated optical density of the immunoreactivity for the acetylcholine receptor at the neuromuscular junction of the phrenic nerve was significantly increased following acupuncture treatment.This outcome of the acupuncture therapy was similar to that of the cholinesterase inhibitor pyridostigmine bromide.These findings suggest that "warming yang and invigorating qi" acupuncture treatment increases acetylcholine receptor expression at the neuromuscular junction in a rat model of autoimmune myasthenia gravis.展开更多
Uveitis is a severe inflammatory disease that can cause visual impairment.Recently,activatedγδT cells were proved to play a central role in the development of experimental autoimmune uveitis(EAU).However,the mechani...Uveitis is a severe inflammatory disease that can cause visual impairment.Recently,activatedγδT cells were proved to play a central role in the development of experimental autoimmune uveitis(EAU).However,the mechanism underlyingγδT cell activation in EAU is incompletely known.In this study,we determined the percentage changes in and the phenotypes ofγδT cells and dendritic cells(DCs)obtained from the spleens of immunized C57BL/6(B6)mice,an animal model of EAU.We found that the number ofγδT cells and DCs obviously increased during the inflammation phase of EAU(days 16-20 of our experiment),and that during this time,γδT cells expressed high levels of CD69 and the integrin lymphocyte function-associated antigen-1(LF A-1)and secreted high levels of interleukin(IL)-17A.Moreover,DCs obtained during this phase expressed high levels of CD80,CD83,CD86,and intracellular cell adhesion molecule-1(ICAM-1).Furthermore,we studied the interaction between DCs andγδT cells by using flow cytometry and confocal microscopy in order to determine whether DCs affectedγδT-cell activation in vitro.Co-cultures of the two types of cells showed that DCs induced high levels of CD69,LFA-1,and I-17A inγδT cells.Imaging studies revealed contact between the DCs andγδT cells.This interaction was mediated by the accumulation of ICAM-1 and LFA-1 at the interface of DCs-γδT cells.Thus,the activation ofγδT cells in EAU was promoted by DCs interacting withγδT cells.展开更多
Tumor necrosis factor-α (TNF-α) plays a key role in the pathogenesis of experimental autoimmune neuritis (EAN) as well as Guillain-Barre syndrome. The proposed pathogenesis of TNF-α associated neuropathies invo...Tumor necrosis factor-α (TNF-α) plays a key role in the pathogenesis of experimental autoimmune neuritis (EAN) as well as Guillain-Barre syndrome. The proposed pathogenesis of TNF-α associated neuropathies involves immune-mediated attack to blood-nerve barrier, aggravated production of pro-inflammatory cytokines, and the induction of Schwann cells apoptosis. TNF-α may play a regulatory role by increasing production of interleukin-1 in macrophages, attenuating T cell receptor signaling and regulating apoptosis of potentially autoreactive T cells in EAN. The data suggest that antagonizing TNF-α functions or suppressing TNF-α production may be useful in the acute phase of EAN treatment, but further studies are required.展开更多
Mesenchymal stem cells have been previously shown to exert an immunomodulatory function. The present study sought to investigate the effects of multipotential human adipose tissue-derived mesenchymal stem cells (hAdM...Mesenchymal stem cells have been previously shown to exert an immunomodulatory function. The present study sought to investigate the effects of multipotential human adipose tissue-derived mesenchymal stem cells (hAdMSCs) on disease progression and cytokine expression in Lewis rats with experimental autoimmune encephalomyelitis (EAE) induced by myelin basic protein. The duration of EAE paralysis in the group treated on day 7 posfimmunization with 5 × 10^6 hAdMSCs was significantly reduced compared with the vehicle-treated controls and the 1 x 106 hAdMSC- treated group. The duration of EAE paralysis in the groups treated with 5 × 10^6 hAdMSCs on both day 1 and day 7 postimmunization was significantly reduced compared with the vehicle-treated controls and the groups treated with 5 × 10^6 hAdMSCs on both day 7 and day 10 postimmunization. The mRNA expression of interleukin-10 and indoleamine 2, 3-dioxygenase was significantly decreased in the hAdMSC-treated group compared with the vehicle-treated group. These findings suggest that the ameliorative effects of hAdMSCs on EAE symptoms operate in a dose- and time-dependent manner and can be mediated in part by the ample production of anti-inflammatory cytokines.展开更多
AIM:To investigate the cytotoxic effect of specific T cells from mice with experimental autoimmune uveitis(EAU)as well as their secreted interferon(IFN)-γand interleukin(IL)-17A on murine photoreceptor(661 W)cells.ME...AIM:To investigate the cytotoxic effect of specific T cells from mice with experimental autoimmune uveitis(EAU)as well as their secreted interferon(IFN)-γand interleukin(IL)-17A on murine photoreceptor(661 W)cells.METHODS:An EAU model was established in female mice by injection of interphotoreceptor retinoid binding protein(IRBP)emulsion supplemented with complete Freund’s adjuvant(CFA)and Mycobacterium tuberculosis(TB).On day 12 after induction of EAU,specific T cells from spleen and lymph node tissues were isolated and cultured for 4 d and the levels of IFN-γand IL-17A in the supernatants were determined by enzyme-linked immunosorbent assays(ELISAs).T cells and their supernatants were added to 661 W cells to observe the alteration of cell morphology;IFN-γand IL-17A were separately added to 661 W cells to observe the effect of IFN-γand IL-17A on cell proliferation.RESULTS:The levels of IFN-γand IL-17A in the T cell supernatants were 1568.64±38.79 pg/m L and 1456.57±46.98 pg/mL,respectively.The supernatants apparently inhibited 661 W cell proliferation(P<0.05).T cells could also attach to the surface of 661 W cells,and IFN-γshowed a more serious cytotoxic effect on 661 W cells than IL-17A,inhibiting cell proliferation(P<0.01).CONCLUSION:IFN-γand IL-17A from T cells of EAU mice model can exert cytotoxic effects on murine photoreceptor cell proliferation,and IFN-γshows more serious cytotoxic effects on murine photoreceptor cells than IL-17A.展开更多
基金supported by a grant from the Department of Science and Technology of Shanxi Province,China,No.20210302123477(to CL)Datong Bureau of Science and Technology of China,No.2020152(to CL)the Opening Foundation of Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine,No.2022-KF-03(to CL).
文摘Multiple sclerosis is characterized by demyelination and neuronal loss caused by inflammatory cell activation and infiltration into the central nervous system.Macrophage polarization plays an important role in the pathogenesis of experimental autoimmune encephalomyelitis,a traditional experimental model of multiple sclerosis.This study investigated the effect of Fasudil on macrophages and examined the therapeutic potential of Fasudil-modified macrophages in experimental autoimmune encephalomyelitis.We found that Fasudil induced the conversion of macrophages from the pro-inflammatory M1 type to the anti-inflammatory M2 type,as shown by reduced expression of inducible nitric oxide synthase/nitric oxide,interleukin-12,and CD16/32 and increased expression of arginase-1,interleukin-10,CD14,and CD206,which was linked to inhibition of Rho kinase activity,decreased expression of toll-like receptors,nuclear factor-κB,and components of the mitogen-activated protein kinase signaling pathway,and generation of the pro-inflammatory cytokines tumor necrosis factor-α,interleukin-1β,and interleukin-6.Crucially,Fasudil-modified macrophages effectively decreased the impact of experimental autoimmune encephalomyelitis,resulting in later onset of disease,lower symptom scores,less weight loss,and reduced demyelination compared with unmodified macrophages.In addition,Fasudil-modified macrophages decreased interleukin-17 expression on CD4^(+)T cells and CD16/32,inducible nitric oxide synthase,and interleukin-12 expression on F4/80^(+)macrophages,as well as increasing interleukin-10 expression on CD4^(+)T cells and arginase-1,CD206,and interleukin-10 expression on F4/80^(+)macrophages,which improved immune regulation and reduced inflammation.These findings suggest that Fasudil-modified macrophages may help treat experimental autoimmune encephalomyelitis by inducing M2 macrophage polarization and inhibiting the inflammatory response,thereby providing new insight into cell immunotherapy for multiple sclerosis.
基金supported by grants from the National Institutes of Health(NS094151 and NS105689)the National Multiple Sclerosis Society(RG5239-A-3)(to WL)
文摘The transcription factor nuclear factor κB(NF-κB) plays major roles in inflammatory diseases through regulation of inflammation and cell viability.Multiple sclerosis(MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system(CNS).It has been shown that NF-κB is activated in multiple cell types in the CNS of MS patients,including T cells,microglia/macrophages,astrocytes,oligodendrocytes,and neurons.Interestingly,data from animal model studies,particularly studies of experimental autoimmune encephalomyelitis,have suggested that NF-κB activation in these individual cell types has distinct effects on the development of MS.In this review,we will cover the current literature on NF-κB and the evidence for its role in the development of MS and its animal model experimental autoimmune encephalomyelitis.
文摘Multiple sclerosis is an autoimmune neurodegenerative disease of the central nervous system characterized by pronounced inflammatory infiltrates entering the brain,spinal cord and optic nerve leading to demyelination.Focal demyelination is associated with relapsing-remitting multiple sclerosis,while progressive forms of the disease show axonal degeneration and neuronal loss.The tests currently used in the clinical diagnosis and management of multiple sclerosis have limitations due to specificity and sensitivity.MicroRNAs(miRNAs)are dysregulated in many diseases and disorders including demyelinating and neuroinflammatory diseases.A review of recent studies with the experimental autoimmune encephalomyelitis animal model(mostly female mice 6–12 weeks of age)has confirmed miRNAs as biomarkers of experimental autoimmune encephalomyelitis disease and importantly at the pre-onset(asymptomatic)stage when assessed in blood plasma and urine exosomes,and spinal cord tissue.The expression of certain miRNAs was also dysregulated at the onset and peak of disease in blood plasma and urine exosomes,brain and spinal cord tissue,and at the post-peak(chronic)stage of experimental autoimmune encephalomyelitis disease in spinal cord tissue.Therapies using miRNA mimics or inhibitors were found to delay the induction and alleviate the severity of experimental autoimmune encephalomyelitis disease.Interestingly,experimental autoimmune encephalomyelitis disease severity was reduced by overexpression of miR-146a,miR-23b,miR-497,miR-26a,and miR-20b,or by suppression of miR-182,miR-181c,miR-223,miR-155,and miR-873.Further studies are warranted on determining more fully miRNA profiles in blood plasma and urine exosomes of experimental autoimmune encephalomyelitis animals since they could serve as biomarkers of asymptomatic multiple sclerosis and disease course.Additionally,studies should be performed with male mice of a similar age,and with aged male and female mice.
基金supported by Science Fund of the Health Department of Jiangsu Province (No. H200504)
文摘Sinomenine is a bioactive alkaloid isolated from the Chinese medicinal plant Sinomenium acutum. It is widely used as an immunosuppressive drug for treating rheumatic and arthritic diseases. In our previous studies, we found that sinomenine reduced cellular infiltration within the spinal cord and alleviated experimental autoimmune encephalomyelitis (EAE) in rats. In this study, we further investigated the mechanisms of sinomenine treatment in EAE rats. In EAE rats, treatment with sinomenine exerted an anti-inducible NO synthase (anti-iNOS) effect, which is related to the reductions of Thl cytokine interferon-y (IFN-7) and its transcription factor, T-bet, in spinal cords. Moreover, sinomenine treatment of splenocytes stimulated with anti-CD3 antibody and recombinant rat in- terleukin 12 reduced the expression of T-bet and IFN-y in vitro and also reduced the capability of supernatants of splenocyte culture to induce iNOS expression by primary astrocytes. However, sinomenine had no direct inhibito- ry effect on iNOS produced by astrocytes cultured with IFN-y and tumor necrosis factor α in vitro. In conclusion, the anti-iNOS effect of sinomenine on EAE is mediated via the suppression of T-bet/IFN-y pathway.
基金Supported by National Natural Science Foundation of China(No.81371005)
文摘· AIM: To determine the effects of rapamycin on experimental autoimmune uveoretinitis(EAU) and investigate of role of rapamycin on T cell subsets in the disease.·METHODS: EAU was induced in rats using peptides1169 to 1191 of the interphotoreceptor binding protein(IRBP). Rapamycin(0.2 mg/kg/d) was administrated by intraperitoneal injection for a consecutive 7d after immunization. Th1/Th2/Th17 cytokines, TGF-β1, and IL-6produced by lymphocyteswere measured by ELISA, while Th17 cells and CD4 +CD25 + regulatory T cells(Tregs)from rat spleen were detected by flow cytometry.·RESULTS: Intraperitoneal treatment immediately after immunization dramatically ameliorated the clinical course of EAU. Clinical responses were associated with reduced retinal inflammatory cell infiltration and tissue destruction. Rapamycin induced suppression of Th1/Th2/Th17 cytokines, including IFN-γ, IL-2, IL-17, IL-4, and IL-10 release from T lymphocytes of EAU rats, in vitro.Rapamycin also significantly increased TGF-β1production but had no effect on IL-6 productionof T lymphocytes from EAU rats in vitro. Furthermore,rapamycin decreased the ratio of Th17 cells/CD4 +T cells and upregulated Tregs in EAU, as detected by flow cytometry.·CONCLUSION: Rapamycin effectively interferes with T cell mediated autoimmune uveitis by inhibiting antigen-specific T cell functions and enhancing Tregs in EAU.Rapamycin is a promising new alternative as an adjunct corticosteroid-sparing agent for treating uveitis.
基金supported by the National Natural Science Foundation of China,No.81771271Key Research and Development Program of Liaoning Province,No.2020JH2/10300047Outstanding Scientific Fund of Shengjing Hospital(all to JF).
文摘Emodin,a substance extracted from herbs such as rhubarb,has a protective effect on the central nervous system.However,the potential therapeutic effect of emodin in the context of multiple sclerosis remains unknown.In this study,a rat model of experimental autoimmune encephalomyelitis was established by immune induction to simulate multiple sclerosis,and the rats were intraperitoneally injected with emodin(20 mg/kg/d)from the day of immune induction until they were sacrificed.In this model,the nucleotide-binding domain-like receptor family pyrin domain containing 3(NLRP3)inflammasome and the microglia exacerbated neuroinflammation,playing an important role in the development of multiple sclerosis.In addition,silent information regulator of transcription 1(SIRT1)/peroxisome proliferator-activated receptor-alpha coactivator(PGC-1α)was found to inhibit activation of the NLRP3 inflammasome,and SIRT1 activation reduced disease severity in experimental autoimmune encephalomyelitis.Furthermore,treatment with emodin decreased body weight loss and neurobehavioral deficits,alleviated inflammatory cell infiltration and demyelination,reduced the expression of inflammatory cytokines,inhibited microglial aggregation and activation,decreased the levels of NLRP3 signaling pathway molecules,and increased the expression of SIRT1 and PGC-1α.These findings suggest that emodin improves the symptoms of experimental autoimmune encephalomyelitis,possibly through regulating the SIRT1/PGC-1α/NLRP3 signaling pathway and inhibiting microglial inflammation.These findings provide experimental evidence for treatment of multiple sclerosis with emodin,enlarging the scope of clinical application for emodin.
基金Supported by the National Natural Science Foundation of China(No.81371005No.81428012)Tianjin Municipal Science and Technology Commission(No.15JCZDJC35600)
文摘AIM:To test the therapeutic effects of delayed treatment of mesenchymal stem cells(MSCs) in recurrent experimental autoimmune uveitis(r EAU).METHODS: The efficacy of different regimens of MSC administration in r EAU were tested by evaluation of clinical and pathological intraocular inflammation,as well as retinal structural and functional integrity using optical coherence tomography(OCT) and electroretinogram(ERG).The retinal sections were also immunostained with antibodies to glial fibrillary acidic protein(GFAP)and rhodopsin(RHO). RESULTS: Delayed treatment of MSCs effectively alleviated the severity of intraocular inflammation with relative intact of outer retinal structure and function.Moreover,double therapies with longer interval led to an even better clinical evaluation,as well as a trend of decrease in relapse and amelioration of retinal function.MSC therapies also effectively reduced GFAP expression and increased RHO expression in the retina.CONCLUSION: MSC administration can effectively treat developed diseases of rEAU,and multiple therapies can provide additional therapeutic benefits.
基金the National Natural Science Foundation of China,No. 30873230Beijing Natural Science Foundation,No. 7092014+1 种基金Scientific Research Common Program of Beijing Municipal Education Commission,No. KM2007100025015Fund-ing Project for Academic Human Resources Devel-opment in Institutions of Higher Learning Under the Jurisdiction of Beijing Mu-nicipality,No. PHR201008401
文摘Studies have demonstrated that amyloid precursor protein (APP) expression increases in multiple sclerosis tissues during acutely and chronically active stages. To determine the relationship between axonal injury and regeneration in multiple sclerosis, an animal model of experimental autoimmune encephalomyelitis was induced using different doses of myelin basic protein peptide. APP and growth-associated protein 43 (GAP-43), which is considered a specific marker of neural regeneration, were assessed by western blot analysis. Expression of APP and GAP-43, as well as the correlation between these two proteins, in brain white matter and spinal cord tissues of experimental autoimmune encephalomyelitis rats at different pathological stages was analyzed. Results showed that APP and GAP-43 expression increased during the acute stage and decreased during remission, with a positive correlation between APP and GAP-43 expression in brain white matter and spinal cord tissues. These results suggest that APP and GAP-43 could provide nutritional and protective effects on damaged neurons.
基金supported by Multiple Sclerosis Research Australia and Trish Multiple Sclerosis Research Foundation Postgraduate Scholarship(to JYL)the National Multiple Sclerosis Society Project Grant#RG4398A1/1+2 种基金International Progressive Multiple Sclerosis Alliance Challenge Award#PA0065Multiple Sclerosis Research Australia and Trish Multiple Sclerosis Research Foundation#15-022Bethlehem Griffiths Research Foundation#BGRF1706(to SP)
文摘Myelin-associated inhibitory factors within the central nervous system(CNS) are considered to be one of the main obstacles for axonal regeneration following disease or injury. The nogo receptor 1(NgR1) has been well documented to play a key role in limiting axonal regrowth in the injured and diseased mammalian CNS. However, the role of nogo receptor in immune cell activation during CNS inflammation is yet to be mechanistically elucidated. Microglia/macrophages are immune cells that are regarded as pathogenic contributors to inflammatory demyelinating lesions in multiple sclerosis(MS). In this study, the animal model of MS, experimental autoimmune encephalomyelitis(EAE) was induced in ngr1^+/+ and ngr1^–/– female mice following injection with the myelin oligodendrocyte glycoprotein(MOG_(35–55)) peptide. A fatemap analysis of microglia/macrophages was performed throughout spinal cord sections of EAE-induced mice at clinical scores of 0, 1, 2 and 3, respectively(increasing locomotor disability) from both genotypes, using the CD11 b and Iba1 cell markers. Western immunoblotting using lysates from isolated spinal cord microglia/macrophages, along with immunohistochemistry and flow cytometric analysis, was performed to demonstrate the expression of nogo receptor and its two homologs during EAE progression. Myelin protein engulfment during EAE progression in ngr1^+/+ and ngr1^–/– mice was demonstrated by western immunblotting of lysates from isolated spinal cord microglia/macrophages, detecting levels of Nogo-A and MOG. The numbers of M1 and M2 microglia/macrophage phenotypes present in the spinal cords of EAE-induced ngr1^+/+ and ngr1^–/– mice, were assessed by flow cytometric analysis using CD38 and Erg-2 markers. A significant difference in microglia/macrophage numbers between ngr1^+/+ and ngr1^–/– mice was identified during the progression of the clinical symptoms of EAE, in the white versus gray matter regions of the spinal cord. This difference was unrelated to the expression of Ng R on these macrophage/microglial cells. We have identified that as EAE progresses, the phagocytic activity of microglia/macrophages with myelin debris, in ngr1^–/– mice, was enhanced. Moreover, we show a modulation from a predominant M1-pathogenic to the M2-neurotrophic cell phenotype in the ngr1^–/– mice during EAE progression. These findings suggest that CNS-specific macrophages and microglia of ngr1^–/– mice may exhibit an enhanced capacity to clear inhibitory molecules that are sequestered in inflammatory lesions.
基金the Key Combination Program of Capital Medical Development Foundation, No. 2005-SF-I-001the Natural Science Foundation of Beijing, No. 7102051+1 种基金Beijing Science and Technology Development Foundation of Traditional Chinese Medicine, No. JJ2009-27the National Natural Science Foundation of China, No. 81072765
文摘Zuogui pills have been shown to attenuate the inflammatory reaction in a rat model of experimental autoimmune encephalomyelitis (EAE). The present study attempted to investigate the pathology underlying the influence of Zuogui pills on myelinolysis in EAE rats. Hematoxylin-eosin and Luxol fast blue staining showed that the myelinolysis foci in the cerebrum, cerebellum, brain stem, and the spinal cord of EAE rats were significantly decreased, along with serum myelin basic protein content following treatment with Zuogui pills.
文摘α-Galactosylceramide (u-GC) is widely known to activate invariant natural killer T (iNKT) cells to suppress my- elin antigen-specific Thl responses, protecting susceptible mice against experimental antoimmune encephalomyelitis 0EAE). Here, we demonstrate an unexpected finding that high doses of α-GC exacerbated, rather than ameliorated, EAE. Similar results were observed when MOG35.ss-specific T cells treated with high-dose α-GC were transferred into naive syngeneic recipient mice. Further study showed that high doses of a-GC directly enhance the Thl7 and Thl re- sponse by activation of CD4+CD44+ memory T cells through phosphorylation of STAT3 and activation of NF-kB. Un- like the activation of iNKT cells by low doses of a-GC, high doses of a-GC directly interacted with CDld expressed on T ceils and activated Thl7 and Thl cells. Furthermore, antigen-presenting cells (APCs) predominantly express CDldl, whereas the majority of CD4~ T cells express CDld2. Knockdown of CDldl or CDld2 gene expression by RNAi interfered with the activation of iNKT or Thl7/Thl cells, respectively. Therefore, α-GC treatment could im- prove or worsen EAE by engaging either APCs or Thl7/Thl cells depending on the dose used.
基金Supported by the National Natural Science Foundation of China(No.81260149No.81360152No.81560162)
文摘AIM:To determine whether gypenosides have protective effects in experimental autoimmune optic neuritis(EAON).METHODS:Mice were randomly divided into seven groups:control group,model group,three different density gypenosides monotherapy,methylprednisolone monotherapy,combination of gypenosides and methylprednisolone group.The control group was subcutaneously injected with oil emulsion adjuvant and all other groups were subcutaneously immunized with an emulsified mixture of myelin oligodendrocyte glycoprotein(MOG) 35-55 peptide to induce EAON.Mice in the gypenosides groups were administered injections daily with three concentrations(15 mg/kg,30 mg/kg,45 mg/kg) of gypenosides respectively.Mice in the methylprednisolone group and the combination treatment group were injected daily with methylprednisolone(20 mg/kg) or methylprednisolone(20 mg/kg) + gypenosides(30 mg/kg),respectively.After MOG immunization,visual evoked potential(VEP),optical coherence tomography(OCT),and histopathologic examination were performed at 14,20,30,and 40 d post-inoculation(p.i.).All results were expressed as mean±SEM.The data were evaluated by oneway ANOVA followed by Tukey or Games-Howell test.RESULTS:Compared with the control group,p2 latency was prolonged in the model group(P=0.041).Combination treatment can alleviated the change in VEP at 20 d p.i.(P=0.012).Average peripapillary retinal nerve fiber layer(RNFL) thickness was reduced in the model group(P= 0.000,30d;P=0.000,40d) and gypenosides treatment remarkably diminished the degree of RNFL degenerationat 30 d and 40 d p.i(P=0.000,30d;P=0.000,40d).The pathomorphological results showed a decrease in demyelination(P=0.020) and inflammatory reactions in the combination group compared with the model group(20d p.i.).Gypenosides treatment also alleviated the degree of axonal loss(40d p.i.)(P=0.003).CONCLUSION:Treatment with gypenosides exerts protective effects on retinal nerve fibers and axons in EAON.When combined with gypenosides,methylprednisolone reduces demyelination in the acute stage of EAON.
文摘BACKGROUND:Previous studies have focused on the correlation between Nogo-A expression and multiple sclerosis or between Nogo-A receptor (NgR) expression and multiple sclerosis in the central nervous system. Expression patterns of Nogo-A and NgR remain poorly understood in rat models of experimental autoimmune encephalomyelitis (EAE).OBJECTIVE:To observe dynamic changes in Nogo-A and NgR protein expression, and to verify the correlation between Nogo-A and NgR protein, as well as expression patterns at various time points, in periventricular tissue of EAE rats.DESIGN, TIME AND SETrlNG:A neuroimmunological, randomized, controlled experiment was performed at the Clinical Institute of Hunan People's Hospital of China from September to November 2008.MATERIALS:Immunohistochemistry (streptavidin-biotin-peroxidase complex method) kit was purchased from Boster, China.METHODS:A total of 60 female, Wistar rats, aged 6-8 weeks, ware randomly assigned to EAE and control groups (n = 30, respectively). Guinea pig spinal cord homogenate, self-made complete Freund's adjuvant (0.2 mL/100 g), and pertussis vaccine (0.2 mL) were subcutaneously injected into the hindlimb foot pad of rats from the EAE group to create rat models of EAE. Complete Freund's adjuvant (0.2 mL) was infused into rats from the control group.MAIN OUTCOME MEASURES:Nogo-A and NgR protein expression was determined in periventricular white matter using immunohistochemical methods. Neurological scores ware determined in all rats.RESULTS:Rats from the EAE group developed acute-onset EAE following immunization. The pathogenetic symptoms reached a peak on day 15, and neurological scores ware also greatest at this time point. Neurological scores decreased with recovery of the illness. Nogo-A was shown to be expressed in neuronal cells and oligodendrocytes, and expression increased 11 days after immunization (P 〈 0.01), decreased by day 13 (P 〈 0.01), and then increased again by day 15. Nogo-A expression remained greater in the EAE group compared with the control group at day 30 (P 〈 0.01). In the EAE group, NgR protein was primarily expressed on the surface of neuronal bodies and axons. NgR expression increased 13-18 days after immunization (P 〈 0.01 or P 〈 0.05).CONCLUSION:Nogo-A and NgR protein expression altered with disease course in periventdcular white matter of EAE rats. Results suggested that Nogo-A and NgR were involved in EAE occurrence.
基金the National Natural Science Foundation of China, No. 30672692
文摘This study investigated the effects of Yishendaluo decoction on the loss of blood-brain barrier integrity in mice exhibiting experimental autoimmune encephalomyelitis.To this end,we used real-time fluorescent quantitative PCR to measure the levels of mRNAs specific to the T cell markers CD4 and CD8,and the monocyte marker CD11b.In addition,we used Evans blue dye extravasation in the spinal cord and brain tissues to assess blood-brain barrier permeability.The results indicated that an increase in blood-brain barrier permeability was associated with an increase in CD4,CD8 and CD11b mRNA expression in experimental autoimmune encephalomyelitis mice.Yishendaluo decoction administration significantly reversed inflammatory cell accumulation in cerebral tissues of experimental autoimmune encephalomyelitis mice.
基金the Natural Science Foundation of Ministry of Science and Technology of China,No.30230140a grant from Merck Serono (China)
文摘The present study established a chronic experimental autoimmune encephalomyelitis model in C57BL/6 mice induced by myelin oligodendrocyte glycoprotein peptides and complete Freund's adjuvant. Onset latency was 12 days, with an incidence rate of 100%. Neuropathological characteristics included perivascular inflammatory cell infiltration, demyelination, neuronal degeneration, and axonal damage within cerebral and myelic white matter. Electron microscopy revealed swollen mitochondria, complete organ disappearance, and fused or broken myelin sheath structure, which were accompanied by myelin sheath reconstruction. Moreover, axonal damage was not consistent with demyelination distribution, and severity of axonal damage did not correlate with demyelination. Results suggested that axonal damage in an experimental autoimmune encephalomyelitis model is not secondary to inflammatory demyelination.
基金supported by the National Natural Science Foundation of China,No.81173344
文摘Myasthenia gravis is an autoimmune disorder in which antibodies have been shown to form against the nicotinic acetylcholine nicotinic postsynaptic receptors located at the neuromuscular junction."Warming yang and invigorating qi" acupuncture treatment has been shown to reduce serum inflammatory cytokine expression and increase transforming growth factor beta expression in rats with experimental autoimmune myasthenia gravis.However,few studies have addressed the effects of this type of acupuncture on the acetylcholine receptors at the neuromuscular junction.Here,we used confocal laser scanning microscopy to examine the area and density of immunoreactivity for an antibody to the nicotinic acetylcholine receptor at the neuromuscular junction in the phrenic nerve of rats with experimental autoimmune myasthenia gravis following "warming yang and invigorating qi" acupuncture therapy.Needles were inserted at acupressure points Shousanli(LI10),Zusanli(ST36),Pishu(BL20),and Shenshu(BL23) once daily for 7 consecutive days.The treatment was repeated after 1 day of rest.We found that area and the integrated optical density of the immunoreactivity for the acetylcholine receptor at the neuromuscular junction of the phrenic nerve was significantly increased following acupuncture treatment.This outcome of the acupuncture therapy was similar to that of the cholinesterase inhibitor pyridostigmine bromide.These findings suggest that "warming yang and invigorating qi" acupuncture treatment increases acetylcholine receptor expression at the neuromuscular junction in a rat model of autoimmune myasthenia gravis.
基金the National Natural Science Foun-dation of China(81373826,81403438 and 81500710).
文摘Uveitis is a severe inflammatory disease that can cause visual impairment.Recently,activatedγδT cells were proved to play a central role in the development of experimental autoimmune uveitis(EAU).However,the mechanism underlyingγδT cell activation in EAU is incompletely known.In this study,we determined the percentage changes in and the phenotypes ofγδT cells and dendritic cells(DCs)obtained from the spleens of immunized C57BL/6(B6)mice,an animal model of EAU.We found that the number ofγδT cells and DCs obviously increased during the inflammation phase of EAU(days 16-20 of our experiment),and that during this time,γδT cells expressed high levels of CD69 and the integrin lymphocyte function-associated antigen-1(LF A-1)and secreted high levels of interleukin(IL)-17A.Moreover,DCs obtained during this phase expressed high levels of CD80,CD83,CD86,and intracellular cell adhesion molecule-1(ICAM-1).Furthermore,we studied the interaction between DCs andγδT cells by using flow cytometry and confocal microscopy in order to determine whether DCs affectedγδT-cell activation in vitro.Co-cultures of the two types of cells showed that DCs induced high levels of CD69,LFA-1,and I-17A inγδT cells.Imaging studies revealed contact between the DCs andγδT cells.This interaction was mediated by the accumulation of ICAM-1 and LFA-1 at the interface of DCs-γδT cells.Thus,the activation ofγδT cells in EAU was promoted by DCs interacting withγδT cells.
文摘Tumor necrosis factor-α (TNF-α) plays a key role in the pathogenesis of experimental autoimmune neuritis (EAN) as well as Guillain-Barre syndrome. The proposed pathogenesis of TNF-α associated neuropathies involves immune-mediated attack to blood-nerve barrier, aggravated production of pro-inflammatory cytokines, and the induction of Schwann cells apoptosis. TNF-α may play a regulatory role by increasing production of interleukin-1 in macrophages, attenuating T cell receptor signaling and regulating apoptosis of potentially autoreactive T cells in EAN. The data suggest that antagonizing TNF-α functions or suppressing TNF-α production may be useful in the acute phase of EAN treatment, but further studies are required.
文摘Mesenchymal stem cells have been previously shown to exert an immunomodulatory function. The present study sought to investigate the effects of multipotential human adipose tissue-derived mesenchymal stem cells (hAdMSCs) on disease progression and cytokine expression in Lewis rats with experimental autoimmune encephalomyelitis (EAE) induced by myelin basic protein. The duration of EAE paralysis in the group treated on day 7 posfimmunization with 5 × 10^6 hAdMSCs was significantly reduced compared with the vehicle-treated controls and the 1 x 106 hAdMSC- treated group. The duration of EAE paralysis in the groups treated with 5 × 10^6 hAdMSCs on both day 1 and day 7 postimmunization was significantly reduced compared with the vehicle-treated controls and the groups treated with 5 × 10^6 hAdMSCs on both day 7 and day 10 postimmunization. The mRNA expression of interleukin-10 and indoleamine 2, 3-dioxygenase was significantly decreased in the hAdMSC-treated group compared with the vehicle-treated group. These findings suggest that the ameliorative effects of hAdMSCs on EAE symptoms operate in a dose- and time-dependent manner and can be mediated in part by the ample production of anti-inflammatory cytokines.
基金Supported by the National Natural Science Foundation of China(No.81873163)the Natural Science Foundation of Shandong Province(No.ZR2017LH042)+2 种基金the Development Project of Medicine and Health Science Technology of Shandong Province(No.2015BJYB28,No.2017WS073)the Development Project of Science and Technology of Traditional Chinese Medicine of Shandong Province(No.2015-145)the Excellent Youth Science Foundation of Shandong University of Traditional Chinese Medicine(No.2018zk26)。
文摘AIM:To investigate the cytotoxic effect of specific T cells from mice with experimental autoimmune uveitis(EAU)as well as their secreted interferon(IFN)-γand interleukin(IL)-17A on murine photoreceptor(661 W)cells.METHODS:An EAU model was established in female mice by injection of interphotoreceptor retinoid binding protein(IRBP)emulsion supplemented with complete Freund’s adjuvant(CFA)and Mycobacterium tuberculosis(TB).On day 12 after induction of EAU,specific T cells from spleen and lymph node tissues were isolated and cultured for 4 d and the levels of IFN-γand IL-17A in the supernatants were determined by enzyme-linked immunosorbent assays(ELISAs).T cells and their supernatants were added to 661 W cells to observe the alteration of cell morphology;IFN-γand IL-17A were separately added to 661 W cells to observe the effect of IFN-γand IL-17A on cell proliferation.RESULTS:The levels of IFN-γand IL-17A in the T cell supernatants were 1568.64±38.79 pg/m L and 1456.57±46.98 pg/mL,respectively.The supernatants apparently inhibited 661 W cell proliferation(P<0.05).T cells could also attach to the surface of 661 W cells,and IFN-γshowed a more serious cytotoxic effect on 661 W cells than IL-17A,inhibiting cell proliferation(P<0.01).CONCLUSION:IFN-γand IL-17A from T cells of EAU mice model can exert cytotoxic effects on murine photoreceptor cell proliferation,and IFN-γshows more serious cytotoxic effects on murine photoreceptor cells than IL-17A.