The determination of material formula needs try-and-error experiment,and consumes large amount of time and fund.In order to solve the problem,a comprehensive method is established,via the experiment of artificial-simi...The determination of material formula needs try-and-error experiment,and consumes large amount of time and fund.In order to solve the problem,a comprehensive method is established,via the experiment of artificial-similar material formula of a mine slope.We controlled the samples by the compactness,and arranged the formula of the test group with the method of the uniform formula experiment.The physical and mechanical parameters of these samples were analyzed using the method of the partial least-squares regression(PLS).And a mathematical model of the indexes of physical and mechanics parameters relating to the factors of formulation constituents was established eventually.We used the model to analyze the effect of each formulation constituent on physical and mechanics parameters of samples.The experiment results and analysis illustrates that1)in the formulation of similar material,the effect of raw materials on the internal friction angleφand cohesion C is opposite;2)The method can highly facilitate the process of the of preparing artificial-similar materials,more economic and effective.展开更多
In this study, hydraulic model tests are carried out to investigate the mean overtopping discharge at perforated caisson breakwaters for non-impulsive waves. Based on the experimental data, the mean overtopping discha...In this study, hydraulic model tests are carried out to investigate the mean overtopping discharge at perforated caisson breakwaters for non-impulsive waves. Based on the experimental data, the mean overtopping discharges of perforated and nonperforated caissons are compared. It is found that when the relative crest freeboard is smaller than 1.6, the mean overtopping discharge of a breakwater can be reduced by at least half by using perforated caissons with 35% porosity instead of nonperforated caissons. The effects of the relative crest freeboard, the caisson porosity and perforation shape, the relative wave chamber width and the relative water depth on the mean overtopping discharge at perforated caissons are clarified. Then,predictive formulas for the mean overtopping discharge at perforated caissons are developed. The predictive formulas based on the experimental data are valid in a wide range of the relative crest freeboard and involve the effects of the caisson porosity and the relative water depth. The predictive formulas developed in this study are of significance for the hydraulic design of perforated caissons.展开更多
This paper studies the flow structure and the bedload transport regime in backwater flows, to provide a theoretical support for solving the sediment transport and bed scour problems in rivers or reservoirs with backwa...This paper studies the flow structure and the bedload transport regime in backwater flows, to provide a theoretical support for solving the sediment transport and bed scour problems in rivers or reservoirs with backwater. The bedload transport rates under different conditions are analyzed first on the basis of theoretical analysis, measurement comparison and flume experiment, and it is pointed out that the existing formulas for the bedload transport rate are not applicable for the bedload transport rate in backwater flows. Next, the flow structure in a non-uniform flow is observed by flume experiments, and by introducing the backwater degree index, the quantitative relation between the relative bed shear stress and the backwater degree is obtained. Finally, the formula for the bedload transport rate applicable for the reservoir channel segment with backwater flows is obtained through measurements and flume experiments.展开更多
基金Projects(41372312,51379194)supported by the National Natural Science Foundation of ChinaProject(CUGL140817)supported by the Fundamental Research Funds for the Central Universities of China University of Geosciences(Wuhan)+1 种基金Project(2014CFB894)supported by the Natural Science Foundation of Hubei Province of ChinaProject(2014M552113)supported by the China Postdoctoral Science Foundation
文摘The determination of material formula needs try-and-error experiment,and consumes large amount of time and fund.In order to solve the problem,a comprehensive method is established,via the experiment of artificial-similar material formula of a mine slope.We controlled the samples by the compactness,and arranged the formula of the test group with the method of the uniform formula experiment.The physical and mechanical parameters of these samples were analyzed using the method of the partial least-squares regression(PLS).And a mathematical model of the indexes of physical and mechanics parameters relating to the factors of formulation constituents was established eventually.We used the model to analyze the effect of each formulation constituent on physical and mechanics parameters of samples.The experiment results and analysis illustrates that1)in the formulation of similar material,the effect of raw materials on the internal friction angleφand cohesion C is opposite;2)The method can highly facilitate the process of the of preparing artificial-similar materials,more economic and effective.
基金supported by the Natural Science Foundation of China(Grant Nos.51322903&51725903)
文摘In this study, hydraulic model tests are carried out to investigate the mean overtopping discharge at perforated caisson breakwaters for non-impulsive waves. Based on the experimental data, the mean overtopping discharges of perforated and nonperforated caissons are compared. It is found that when the relative crest freeboard is smaller than 1.6, the mean overtopping discharge of a breakwater can be reduced by at least half by using perforated caissons with 35% porosity instead of nonperforated caissons. The effects of the relative crest freeboard, the caisson porosity and perforation shape, the relative wave chamber width and the relative water depth on the mean overtopping discharge at perforated caissons are clarified. Then,predictive formulas for the mean overtopping discharge at perforated caissons are developed. The predictive formulas based on the experimental data are valid in a wide range of the relative crest freeboard and involve the effects of the caisson porosity and the relative water depth. The predictive formulas developed in this study are of significance for the hydraulic design of perforated caissons.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.51339001,51479009)
文摘This paper studies the flow structure and the bedload transport regime in backwater flows, to provide a theoretical support for solving the sediment transport and bed scour problems in rivers or reservoirs with backwater. The bedload transport rates under different conditions are analyzed first on the basis of theoretical analysis, measurement comparison and flume experiment, and it is pointed out that the existing formulas for the bedload transport rate are not applicable for the bedload transport rate in backwater flows. Next, the flow structure in a non-uniform flow is observed by flume experiments, and by introducing the backwater degree index, the quantitative relation between the relative bed shear stress and the backwater degree is obtained. Finally, the formula for the bedload transport rate applicable for the reservoir channel segment with backwater flows is obtained through measurements and flume experiments.