A large model of the screen was mounted in the laboratory for studying its modal performance. The model is suspended with steel ropes. Modal test was carried out with artificially exciting by 500 g impacting hammer an...A large model of the screen was mounted in the laboratory for studying its modal performance. The model is suspended with steel ropes. Modal test was carried out with artificially exciting by 500 g impacting hammer and 100 kg exciting force shaker respectively. Synthesis and correction of the modal parameters are obtained from both testing methods. Design faults of vibrating screen were determined based on the analy-sis and dynamic correction of structure approaches about the screen was put forward finally.展开更多
This paper investigates the possibility of utilizing response from natural ice loading for modal parameter identification of real offshore platforms.The test platform is the JZ20-2 MUQ jacket platform located in the L...This paper investigates the possibility of utilizing response from natural ice loading for modal parameter identification of real offshore platforms.The test platform is the JZ20-2 MUQ jacket platform located in the Liaodong Bay,China.A field experiment is carried out in winter season,as the platform is excited by floating ices.The feasibility is demonstrated by the acceleration response of two different segments.By the SSI-data method,the modal frequencies and damping ratios of four structural modes can be successfully identified from both segments.The estimated information from both segments is almost identical,which demonstrates that the modal identification is trustworthy.Furthermore,by taking the Jacket platform as a benchmark,the numerical performance of five popular time-domain EMA methods is systematically compared from different viewpoints.The comparisons are categorized as:(1)stochastic methods versus deterministic methods;(2)high-order methods versus low-order methods;(3)data-driven versus covariance-driven stochastic subspace identification methods.展开更多
The paper presents process of creating a centrifugal pump rotor model in CAD environment. Modeling of a virtual object was divided into two stages, modeling of the efficient pump and the simulated failure of one of th...The paper presents process of creating a centrifugal pump rotor model in CAD environment. Modeling of a virtual object was divided into two stages, modeling of the efficient pump and the simulated failure of one of the impeller's blades. Comparison of the results of the resonance frequency obtained from the model analysis, with those obtained from measurements on the actual object was shown. Measurements and simulations were conducted on the pump before and after the simulated damaged of the rotor. In order to verify the model the rotor of pump was weighted and compared with the masses of the respective components obtained from the virtual object. In the second stage genuine rotor was subjected to the experimental modal analysis.展开更多
The chassis frame of a heavy lectra haul is analysed by both modal experiment method and finite element method (FEM ) . The first ten order modal parameters of the chassis frame have been obtained satisfactorily. Thes...The chassis frame of a heavy lectra haul is analysed by both modal experiment method and finite element method (FEM ) . The first ten order modal parameters of the chassis frame have been obtained satisfactorily. These parameters have important reference value in designing the chassis frame properly and provide a necessary basis for the fault diagnostics of the truck.展开更多
The “Huang gua” melons were measured for their physical properties including firmness and static elastic modulus. The vibrational characteristics of fruits and vegetables are governed by their elastic modulus (firmn...The “Huang gua” melons were measured for their physical properties including firmness and static elastic modulus. The vibrational characteristics of fruits and vegetables are governed by their elastic modulus (firmness), mass, and geometry. Therefore, it is possible to evaluate firmness of fruits and vegetables based on their vibrational characteristics. Analysis of the vibration responses of a fruit is suggested for measuring elastic properties (Firmness) non-destructively. The impulse response method is often used to measure firmness of fruits. The fruit was excited using three types of balls (wooden, steel and rubber) and the vibration is detected by an accelerometer. The Instron device was used to measure the static elastic modulus of the inner, middle and outer portions of melon flesh. Finite element (FE) technique was used to determine the optimum excitation location of the chosen measurement sensor and to analyze the mode shape fruits. Four types of mode shapes (torsional or flexural mode shape, first-type, second-type spherical mode and breathing mode shape) were found. Finite element simulation results agreed well with experimental results. Correlation between the firmness and resonant frequency (r2=0.91) and between the resonant frequency and stiffness factor (r2=0.74) existed. The optimum location and suitable direction for excitation and response measurement on the fruit were suggested.展开更多
This paper presents a new theoretical model to determine the optimal axial preload of a spindle system, for challenging the traditional method which relies heavily on experience of engineers. The axial preloading stif...This paper presents a new theoretical model to determine the optimal axial preload of a spindle system, for challenging the traditional method which relies heavily on experience of engineers. The axial preloading stiffness was treated as the sum of the spindle modal stiffness and the framework elastic stiffness, based on a novel concept that magnitude of preloads can be controlled by measuring the resonant frequency of a spindle system. By employing an example of a certain type of aircraft simulating rotary table, the modal stiffness was measured on the Agilent 35670A Dynamic Signal Analyzer by experimental modal analysis. The equivalent elastic stiffness was simulated by both finite element analysis in ANSYS? and a curve fitting in MATLAB?. Results showed that the static preloading stiffness of the spindle was 7.2125×107 N/m, and that the optimal preloading force was 120.0848 N. Practical application proved the feasibility of our method.展开更多
The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental mod...The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental modal analysis method. Meanwhile,carbon fiber plain woven laminated / epoxy resin composites with different fiber volume fraction were concerned for comparison. The experimental result of braided specimens shows that the first three orders of natural frequency increase and the first three orders of the damping ratios of specimens decrease, when the fiber volume fraction increases. Furthermore,larger fiber volume fraction will be valuable for the better anti-exiting property of braided composites,and get an opposite effect on dissipation of vibration energy. The fiber volume fraction is an important factor for vibration performance design of braided composites. The comparison between the braided specimens and laminated specimens reveals that 3D braided composites have a wider range of damping properties than laminated composites with the same fiber volume fractions.展开更多
For a serious prediction of vibration characteristics of any structure, a detailed knowledge of the modal characteristic is essential. This is especially important for bladed turbine rotors. Mistuning of the blading o...For a serious prediction of vibration characteristics of any structure, a detailed knowledge of the modal characteristic is essential. This is especially important for bladed turbine rotors. Mistuning of the blading of a turbine rotor can appear due to manufacturing tolerances or because of the blading process itself due to unequal mounting of the blades into the disk. This paper investigates the mistuning of the individual blades of a low pressure turbine with respect to the effects mentioned above. Two different rotors with different aerodynamic design of the blades were investigated. The blades were mounted to the disk with a so-called hammer head root which is especially prone to mounting irregularities. For detailed investigations, the rotor was excited with a shaker system to detect the forced response behavior of the individual blades. The measurements were done with a laser vibrometer system. As the excitation of rotor structure was held constant during measurement, it was possible to detect the line of nodes and mode shapes as well. It could be shown that the assembly process has an influence on the mistuning. The data were analyzed and compared with numerical results. For this, different contact models and boundary conditions were used. The above described characterization of modal behavior of the rotor is the basis for the upcoming aeroelastic investigations and especially for the blade vibration measurements of the rotor, turning with design and off-design speeds.展开更多
Because of the limited space of the launch rockets, deployable mechanisms are always used to solve the phenomenon. One dimensional deployable mast can deploy and support antenna, solar sail and space optical camera. T...Because of the limited space of the launch rockets, deployable mechanisms are always used to solve the phenomenon. One dimensional deployable mast can deploy and support antenna, solar sail and space optical camera. Tape-spring hyperelastic hinges can be folded and extended into a rod like configuration. It utilizes the strain energy to realize self-deploying and drive the other structures. One kind of triangular prism mast with tape-spring hyperelastic hinges is proposed and developed. Stretching and compression stiffness theoretical model are established with considering the tape-spring hyperelastic hinges based on static theory. The finite element model of ten-module triangular prism mast is set up by ABAQUS with the tape-spring hyperelastic hinge and parameter study is performed to investigate the influence of thickness, section angle and radius. Two-module TPM is processed and tested the compression stiffness by the laser displacement sensor, deploying repeat accuracy by the high speed camera, modal shape and fundamental frequency at cantilever position by LMS multi-channel vibration test and analysis system, which are used to verify precision of the theoretical and finite element models of ten-module triangular prism mast with the tape-spring hyperelastic hinges. This research proposes an innovative one dimensional triangular prism with tape-spring hyperelastic hinge which has great application value to the space deployable mechanisms.展开更多
Based on experiment modal analysis(EMA) and operation modal analysis(OMA), the dynamic characteristics of cylindrical grinding machine were measured and provided a basis for further failure analysis.The influences of ...Based on experiment modal analysis(EMA) and operation modal analysis(OMA), the dynamic characteristics of cylindrical grinding machine were measured and provided a basis for further failure analysis.The influences of grinding parameters on dynamic characteristics were studied by analyzing the diagnostic signals extracted from racing and grinding experiments.The significant frequency of 38 Hz related to grinding wheel spindle speed of 2 307 r/min showed that the wheel spindle system was in a state of imbalan...展开更多
A dynamic load identification model of structural system based on the gener-alized orthogonal polynomial theory is provided, and the least Square discrete algorithm foridentifying the dynamic load is supplied. The mai...A dynamic load identification model of structural system based on the gener-alized orthogonal polynomial theory is provided, and the least Square discrete algorithm foridentifying the dynamic load is supplied. The main key is that the convolution relationsbetween the input and output of the system in time domain are transformed into linear oP-erators in generalized orthogonal domain. The new theory is fully tested and verified bythe dynamic analysis l 'modal test and dynamic load identification teSt of a simulation speci-men- It is shown that the method has some advantages, such as the simple dynamic cali-bration test, the high identification accuracy, especially for the transient load with shortsampling. These are very useful in engineering applications.展开更多
To improve the dynamic performance and reduce the weight of the planet carrier in wind turbine gearbox, a multi-objective optimization method, which is driven by the maximum deformation, the maximum stress and the min...To improve the dynamic performance and reduce the weight of the planet carrier in wind turbine gearbox, a multi-objective optimization method, which is driven by the maximum deformation, the maximum stress and the minimum mass of the studied part, is proposed by combining the response surface method and genetic algorithms in this paper. Firstly, the design points' distribution for the design variables of the planet carrier is established with the central composite design (CCD) method. Then, based on the computing results of finite element analysis (FEA), the response surface analysis is conducted to find out the proper sets of design variable values. And a multi-objective genetic algorithm (MOGA) is applied to determine the direction of optimization. As well, this method is applied to design and optimize the planet carrier in a 1.5 MW wind turbine gearbox, the results of which are validated by an experimental modal test. Compared with the original design, the mass and the stress of the optimized planet carrier are respectively reduced by 9.3% and 40%. Consequently, the cost of planet carrier is greatly reduced and its stability is also improved.展开更多
The vibration problem during the operation of rice transplanters is the most common phenomenon.In order that the static and dynamic characteristics of the rice transplanter chassis can meet the requirements of more st...The vibration problem during the operation of rice transplanters is the most common phenomenon.In order that the static and dynamic characteristics of the rice transplanter chassis can meet the requirements of more stable operation,the research took the 2ZG-6DK rice transplanter as the research object to carry out a vibration reduction optimization study.In the research,the Pro/Engineer 5.0 software was first used to model the chassis of the rice transplanter.The constructed finite element model was revised by using the structural parameter revision method and the mixed penalty function method.The model was imported into ANSYS Workbench to solve the modal frequency and vibration shape of the rice transplanter chassis.Based on the MAC(modal assurance criterion)criterion,modal tests were carried out to verify the accuracy of the finite element theoretical analysis.Through the analysis of the characteristics of the external excitation frequency,the chassis is structurally optimized to avoid resonance caused by the natural frequency of the chassis falling within the road excitation frequency range.The final optimization results showed that the first four orders of modal frequencies of the chassis were adjusted to 32.083 Hz,33.751 Hz,42.517 Hz,and 50.362 Hz,respectively,in the case that the chassis mass was increased by 6.714 kg(8.8%).They all avoid the range of road excitation frequency(10-30 Hz)so that the rice transplanter can effectively avoid the resonance phenomenon during operation.This study can provide a reference for the design and optimization of the chassis structure of transplanter.展开更多
Condition assessment of bridges has become increasingly important. In order to accurately simulate the real bridge, finite element (FE) model updating method is often applied. This paper presents the calibration of ...Condition assessment of bridges has become increasingly important. In order to accurately simulate the real bridge, finite element (FE) model updating method is often applied. This paper presents the calibration of the FE model of a reinforced concrete tied-arch bridge using Douglas-Reid method in combination with Rosenbrock optimization algorithm. Based on original drawings and topographic survey, a FE model of the investigated bridge is created. Eight global modes of vibration of the bridge are identified by ambient vibration tests and the frequency domain decomposition technique. Then, eight structural parameters are selected for FE model updating procedure through sensitivity analysis. Finally, the optimal structural parameters are identified using Rosenbrock optimization algorithm. Results show that although the identified parameters lead to a perfect agreement between approximate and measured natural frequencies, they may not be the optimal variables which minimize the differences between numerical and experimental modal data. However, a satisfied agreement between them is still presented. Hence, FE model updating based on Douglas-Reid method and Rosenbrock optimization algorithm could be used as an alternative to other complex updating procedures.展开更多
Vibration-based damage detection methods have become widely used because of their advantages over traditional methods.This paper presents a new approach to identify the crack depth in steel beam structures based on vi...Vibration-based damage detection methods have become widely used because of their advantages over traditional methods.This paper presents a new approach to identify the crack depth in steel beam structures based on vibration analysis using the Finite Element Method(FEM)and Artificial Neural Network(ANN)combined with Butterfly Optimization Algorithm(BOA).ANN is quite successful in such identification issues,but it has some limitations,such as reduction of error after system training is complete,which means the output does not provide optimal results.This paper improves ANN training after introducing BOA as a hybrid model(BOA-ANN).Natural frequencies are used as input parameters and crack depth as output.The data are collected from improved FEM using simulation tools(ABAQUS)based on different crack depths and locations as the first stage.Next,data are collected from experimental analysis of cracked beams based on different crack depths and locations to test the reliability of the presented technique.The proposed approach,compared to other methods,can predict crack depth with improved accuracy.展开更多
基金Supported by Provincial Natural Science Foundation of Shanxi(20031046)
文摘A large model of the screen was mounted in the laboratory for studying its modal performance. The model is suspended with steel ropes. Modal test was carried out with artificially exciting by 500 g impacting hammer and 100 kg exciting force shaker respectively. Synthesis and correction of the modal parameters are obtained from both testing methods. Design faults of vibrating screen were determined based on the analy-sis and dynamic correction of structure approaches about the screen was put forward finally.
基金financially supported by the National Science Fund for Distinguished Young Scholars(Grant No.51625902)the Major Scientific and Technological Innovation Project of Shandong Province(Grant No.2019JZZY010820)+2 种基金the National Key Research and Development Program of China(Grant No.2019YFC0312404)the National Natural Science Foundation of China(Grant No.51879249)the Taishan Scholars Program of Shandong Province(Grant No.TS201511016)。
文摘This paper investigates the possibility of utilizing response from natural ice loading for modal parameter identification of real offshore platforms.The test platform is the JZ20-2 MUQ jacket platform located in the Liaodong Bay,China.A field experiment is carried out in winter season,as the platform is excited by floating ices.The feasibility is demonstrated by the acceleration response of two different segments.By the SSI-data method,the modal frequencies and damping ratios of four structural modes can be successfully identified from both segments.The estimated information from both segments is almost identical,which demonstrates that the modal identification is trustworthy.Furthermore,by taking the Jacket platform as a benchmark,the numerical performance of five popular time-domain EMA methods is systematically compared from different viewpoints.The comparisons are categorized as:(1)stochastic methods versus deterministic methods;(2)high-order methods versus low-order methods;(3)data-driven versus covariance-driven stochastic subspace identification methods.
文摘The paper presents process of creating a centrifugal pump rotor model in CAD environment. Modeling of a virtual object was divided into two stages, modeling of the efficient pump and the simulated failure of one of the impeller's blades. Comparison of the results of the resonance frequency obtained from the model analysis, with those obtained from measurements on the actual object was shown. Measurements and simulations were conducted on the pump before and after the simulated damaged of the rotor. In order to verify the model the rotor of pump was weighted and compared with the masses of the respective components obtained from the virtual object. In the second stage genuine rotor was subjected to the experimental modal analysis.
文摘The chassis frame of a heavy lectra haul is analysed by both modal experiment method and finite element method (FEM ) . The first ten order modal parameters of the chassis frame have been obtained satisfactorily. These parameters have important reference value in designing the chassis frame properly and provide a necessary basis for the fault diagnostics of the truck.
基金Project supported by the National Natural Science Foundation of China (No. 30370371) and the Natural Science Foundation of Zheji-ang Province (No. 301267), China
文摘The “Huang gua” melons were measured for their physical properties including firmness and static elastic modulus. The vibrational characteristics of fruits and vegetables are governed by their elastic modulus (firmness), mass, and geometry. Therefore, it is possible to evaluate firmness of fruits and vegetables based on their vibrational characteristics. Analysis of the vibration responses of a fruit is suggested for measuring elastic properties (Firmness) non-destructively. The impulse response method is often used to measure firmness of fruits. The fruit was excited using three types of balls (wooden, steel and rubber) and the vibration is detected by an accelerometer. The Instron device was used to measure the static elastic modulus of the inner, middle and outer portions of melon flesh. Finite element (FE) technique was used to determine the optimum excitation location of the chosen measurement sensor and to analyze the mode shape fruits. Four types of mode shapes (torsional or flexural mode shape, first-type, second-type spherical mode and breathing mode shape) were found. Finite element simulation results agreed well with experimental results. Correlation between the firmness and resonant frequency (r2=0.91) and between the resonant frequency and stiffness factor (r2=0.74) existed. The optimum location and suitable direction for excitation and response measurement on the fruit were suggested.
文摘This paper presents a new theoretical model to determine the optimal axial preload of a spindle system, for challenging the traditional method which relies heavily on experience of engineers. The axial preloading stiffness was treated as the sum of the spindle modal stiffness and the framework elastic stiffness, based on a novel concept that magnitude of preloads can be controlled by measuring the resonant frequency of a spindle system. By employing an example of a certain type of aircraft simulating rotary table, the modal stiffness was measured on the Agilent 35670A Dynamic Signal Analyzer by experimental modal analysis. The equivalent elastic stiffness was simulated by both finite element analysis in ANSYS? and a curve fitting in MATLAB?. Results showed that the static preloading stiffness of the spindle was 7.2125×107 N/m, and that the optimal preloading force was 120.0848 N. Practical application proved the feasibility of our method.
基金Tianjin Municipal Science and Technologies Commission,China(Nos.10SYSYJC27800,1ZCKFSF00500)
文摘The effects of fiber volume fraction on damping properties of carbon fiber three-dimensional and five-directional( 3D-5Dir)braided carbon fiber / epoxyres in composite cantilever beams were studied by experimental modal analysis method. Meanwhile,carbon fiber plain woven laminated / epoxy resin composites with different fiber volume fraction were concerned for comparison. The experimental result of braided specimens shows that the first three orders of natural frequency increase and the first three orders of the damping ratios of specimens decrease, when the fiber volume fraction increases. Furthermore,larger fiber volume fraction will be valuable for the better anti-exiting property of braided composites,and get an opposite effect on dissipation of vibration energy. The fiber volume fraction is an important factor for vibration performance design of braided composites. The comparison between the braided specimens and laminated specimens reveals that 3D braided composites have a wider range of damping properties than laminated composites with the same fiber volume fractions.
文摘For a serious prediction of vibration characteristics of any structure, a detailed knowledge of the modal characteristic is essential. This is especially important for bladed turbine rotors. Mistuning of the blading of a turbine rotor can appear due to manufacturing tolerances or because of the blading process itself due to unequal mounting of the blades into the disk. This paper investigates the mistuning of the individual blades of a low pressure turbine with respect to the effects mentioned above. Two different rotors with different aerodynamic design of the blades were investigated. The blades were mounted to the disk with a so-called hammer head root which is especially prone to mounting irregularities. For detailed investigations, the rotor was excited with a shaker system to detect the forced response behavior of the individual blades. The measurements were done with a laser vibrometer system. As the excitation of rotor structure was held constant during measurement, it was possible to detect the line of nodes and mode shapes as well. It could be shown that the assembly process has an influence on the mistuning. The data were analyzed and compared with numerical results. For this, different contact models and boundary conditions were used. The above described characterization of modal behavior of the rotor is the basis for the upcoming aeroelastic investigations and especially for the blade vibration measurements of the rotor, turning with design and off-design speeds.
基金Supported by National Natural Science Foundation of China(Grant No.51605001)Joint Funds of the National Natural Science Foundation of China(Grant No.U1637207)Anhui University Research Foundation for Doctor(Grant No.J01003222)
文摘Because of the limited space of the launch rockets, deployable mechanisms are always used to solve the phenomenon. One dimensional deployable mast can deploy and support antenna, solar sail and space optical camera. Tape-spring hyperelastic hinges can be folded and extended into a rod like configuration. It utilizes the strain energy to realize self-deploying and drive the other structures. One kind of triangular prism mast with tape-spring hyperelastic hinges is proposed and developed. Stretching and compression stiffness theoretical model are established with considering the tape-spring hyperelastic hinges based on static theory. The finite element model of ten-module triangular prism mast is set up by ABAQUS with the tape-spring hyperelastic hinge and parameter study is performed to investigate the influence of thickness, section angle and radius. Two-module TPM is processed and tested the compression stiffness by the laser displacement sensor, deploying repeat accuracy by the high speed camera, modal shape and fundamental frequency at cantilever position by LMS multi-channel vibration test and analysis system, which are used to verify precision of the theoretical and finite element models of ten-module triangular prism mast with the tape-spring hyperelastic hinges. This research proposes an innovative one dimensional triangular prism with tape-spring hyperelastic hinge which has great application value to the space deployable mechanisms.
文摘Based on experiment modal analysis(EMA) and operation modal analysis(OMA), the dynamic characteristics of cylindrical grinding machine were measured and provided a basis for further failure analysis.The influences of grinding parameters on dynamic characteristics were studied by analyzing the diagnostic signals extracted from racing and grinding experiments.The significant frequency of 38 Hz related to grinding wheel spindle speed of 2 307 r/min showed that the wheel spindle system was in a state of imbalan...
文摘A dynamic load identification model of structural system based on the gener-alized orthogonal polynomial theory is provided, and the least Square discrete algorithm foridentifying the dynamic load is supplied. The main key is that the convolution relationsbetween the input and output of the system in time domain are transformed into linear oP-erators in generalized orthogonal domain. The new theory is fully tested and verified bythe dynamic analysis l 'modal test and dynamic load identification teSt of a simulation speci-men- It is shown that the method has some advantages, such as the simple dynamic cali-bration test, the high identification accuracy, especially for the transient load with shortsampling. These are very useful in engineering applications.
文摘To improve the dynamic performance and reduce the weight of the planet carrier in wind turbine gearbox, a multi-objective optimization method, which is driven by the maximum deformation, the maximum stress and the minimum mass of the studied part, is proposed by combining the response surface method and genetic algorithms in this paper. Firstly, the design points' distribution for the design variables of the planet carrier is established with the central composite design (CCD) method. Then, based on the computing results of finite element analysis (FEA), the response surface analysis is conducted to find out the proper sets of design variable values. And a multi-objective genetic algorithm (MOGA) is applied to determine the direction of optimization. As well, this method is applied to design and optimize the planet carrier in a 1.5 MW wind turbine gearbox, the results of which are validated by an experimental modal test. Compared with the original design, the mass and the stress of the optimized planet carrier are respectively reduced by 9.3% and 40%. Consequently, the cost of planet carrier is greatly reduced and its stability is also improved.
基金financially supported by the National Key Research and Development Program of China Subproject(Grant No.2021YFD2000601)Innovation Scientists and Technicians Talent Projects of Henan Provincial Department of Education(Grant No.23IRTSTHN015,No.202300410124)。
文摘The vibration problem during the operation of rice transplanters is the most common phenomenon.In order that the static and dynamic characteristics of the rice transplanter chassis can meet the requirements of more stable operation,the research took the 2ZG-6DK rice transplanter as the research object to carry out a vibration reduction optimization study.In the research,the Pro/Engineer 5.0 software was first used to model the chassis of the rice transplanter.The constructed finite element model was revised by using the structural parameter revision method and the mixed penalty function method.The model was imported into ANSYS Workbench to solve the modal frequency and vibration shape of the rice transplanter chassis.Based on the MAC(modal assurance criterion)criterion,modal tests were carried out to verify the accuracy of the finite element theoretical analysis.Through the analysis of the characteristics of the external excitation frequency,the chassis is structurally optimized to avoid resonance caused by the natural frequency of the chassis falling within the road excitation frequency range.The final optimization results showed that the first four orders of modal frequencies of the chassis were adjusted to 32.083 Hz,33.751 Hz,42.517 Hz,and 50.362 Hz,respectively,in the case that the chassis mass was increased by 6.714 kg(8.8%).They all avoid the range of road excitation frequency(10-30 Hz)so that the rice transplanter can effectively avoid the resonance phenomenon during operation.This study can provide a reference for the design and optimization of the chassis structure of transplanter.
文摘Condition assessment of bridges has become increasingly important. In order to accurately simulate the real bridge, finite element (FE) model updating method is often applied. This paper presents the calibration of the FE model of a reinforced concrete tied-arch bridge using Douglas-Reid method in combination with Rosenbrock optimization algorithm. Based on original drawings and topographic survey, a FE model of the investigated bridge is created. Eight global modes of vibration of the bridge are identified by ambient vibration tests and the frequency domain decomposition technique. Then, eight structural parameters are selected for FE model updating procedure through sensitivity analysis. Finally, the optimal structural parameters are identified using Rosenbrock optimization algorithm. Results show that although the identified parameters lead to a perfect agreement between approximate and measured natural frequencies, they may not be the optimal variables which minimize the differences between numerical and experimental modal data. However, a satisfied agreement between them is still presented. Hence, FE model updating based on Douglas-Reid method and Rosenbrock optimization algorithm could be used as an alternative to other complex updating procedures.
文摘Vibration-based damage detection methods have become widely used because of their advantages over traditional methods.This paper presents a new approach to identify the crack depth in steel beam structures based on vibration analysis using the Finite Element Method(FEM)and Artificial Neural Network(ANN)combined with Butterfly Optimization Algorithm(BOA).ANN is quite successful in such identification issues,but it has some limitations,such as reduction of error after system training is complete,which means the output does not provide optimal results.This paper improves ANN training after introducing BOA as a hybrid model(BOA-ANN).Natural frequencies are used as input parameters and crack depth as output.The data are collected from improved FEM using simulation tools(ABAQUS)based on different crack depths and locations as the first stage.Next,data are collected from experimental analysis of cracked beams based on different crack depths and locations to test the reliability of the presented technique.The proposed approach,compared to other methods,can predict crack depth with improved accuracy.