Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational...Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems.展开更多
The three largest earthquakes in northern California since 1849 were preceded by increased decadal activity for moderate-size shocks along surrounding nearby faults. Increased seismicity, double-difference precise loc...The three largest earthquakes in northern California since 1849 were preceded by increased decadal activity for moderate-size shocks along surrounding nearby faults. Increased seismicity, double-difference precise locations of earthquakes since 1968, geodetic data and fault offsets for the 1906 great shock are used to re-examine the timing and locations of possible future large earthquakes. The physical mechanisms of regional faults like the Calaveras, Hayward and Sargent, which exhibit creep, differ from those of the northern San Andreas, which is currently locked and is not creeping. Much decadal forerunning activity occurred on creeping faults. Moderate-size earthquakes along those faults became more frequent as stresses in the region increased in the latter part of the cycle of stress restoration for major and great earthquakes along the San Andreas. They may be useful for decadal forecasts. Yearly to decadal forecasts, however, are based on only a few major to great events. Activity along closer faults like that in the two years prior to the 1989 Loma Prieta shock needs to be examined for possible yearly forerunning changes to large plate boundary earthquakes. Geodetic observations are needed to focus on identifying creeping faults close to the San Andreas. The distribution of moderate-size earthquakes increased significantly since 1990 along the Hayward fault but not adjacent to the San Andreas fault to the south of San Francisco compared to what took place in the decades prior to the three major historic earthquakes in the region. It is now clear from a re-examination of the 1989 mainshock that the increased level of moderate-size shocks in the one to two preceding decades occurred on nearby East Bay faults. Double-difference locations of small earthquakes provide structural information about faults in the region, especially their depths. The northern San Andreas fault is divided into several strongly coupled segments based on differences in seismicity.展开更多
China has been continuously improving its monitoring methods and strategies to address key infectious diseases(KIDs).After the severe acute respiratory syndrome epidemic in 2003,China established a comprehensive repor...China has been continuously improving its monitoring methods and strategies to address key infectious diseases(KIDs).After the severe acute respiratory syndrome epidemic in 2003,China established a comprehensive report-ing system for infectious diseases(IDs)and public health emergencies.The relatively lagging warning thresholds,limited warning information,and outdated warning technology are insufficient to meet the needs of comprehensive monitoring for modern KIDs.Strengthening early monitoring and warning capabilities to enhance the public health system has become a top priority,with increasing demand for early warning thresholds,information,and tech-niques,thanks to constant innovation and development in molecular biology,bioinformatics,artificial intelligence,and other identification and analysis technologies.A panel of 31 experts has recommended a fourth-generation comprehensive surveillance system targeting KIDs(41 notifiable diseases and emerging IDs).The aim of this surveil-lance system is to systematically monitor the epidemiology and causal pathogens of KIDs in hosts such as humans,animals,and vectors,along with associated environmental pathogens.By integrating factors influencing epidemic spread and risk assessment,the surveillance system can serve to detect,predict,and provide early warnings for the occurrence,development,variation,and spread of known or novel KIDs.Moreover,we recommend comprehensive ID monitoring based on the fourth-generation surveillance system,along with a data-integrated monitoring and early warning platform and a consortium pathogen detection technology system.This series of considerations is based on systematic and comprehensive monitoring across multiple sectors,dimensions,factors,and pathogens that is sup-ported by data integration and connectivity.This expert consensus will provides an opportunity for collaboration in various fields and relies on interdisciplinary application to enhance comprehensive monitoring,prediction,and early warning capabilities for the next generation of ID surveillance.This expert consensus will serve as a reference for ID prevention and control as well as other related activities.展开更多
This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat...This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies.展开更多
Purpose-The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.Design/methodology/approach-The expert diagnosis system utilizes statistical and deep ...Purpose-The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.Design/methodology/approach-The expert diagnosis system utilizes statistical and deep learning methods to model the real-time status and historical data features of rail vehicle.Based on data mechanism models,it predicts the lifespan of key components,evaluates the health status of the vehicle and achieves intelligent monitoring and diagnosis of rail vehicle.Findings-The actual operation effect of this system shows that it has improved the intelligent level of the rail vehicle monitoring system,which helps operators to monitor the operation of vehicle online,predict potential risks and faults of vehicle and ensure the smooth and safe operation of vehicle.Originality/value-This system improves the efficiency of rail vehicle operation,scheduling and maintenance through intelligent monitoring and diagnosis of rail vehicle.展开更多
Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing stud...Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing studies have concentrated on developing advanced algorithms or models to attain state-of-the-art forecasting accuracy.For real-world ITS applications,the interpretability of the developed models is extremely important but has largely been ignored.This study presents an interpretable traffic flow forecasting framework based on popular tree-ensemble algorithms.The framework comprises multiple key components integrated into a highly flexible and customizable multi-stage pipeline,enabling the seamless incorporation of various algorithms and tools.To evaluate the effectiveness of the framework,the developed tree-ensemble models and another three typical categories of baseline models,including statistical time series,shallow learning,and deep learning,were compared on three datasets collected from different types of roads(i.e.,arterial,expressway,and freeway).Further,the study delves into an in-depth interpretability analysis of the most competitive tree-ensemble models using six categories of interpretable machine learning methods.Experimental results highlight the potential of the proposed framework.The tree-ensemble models developed within this framework achieve competitive accuracy while maintaining high inference efficiency similar to statistical time series and shallow learning models.Meanwhile,these tree-ensemble models offer interpretability from multiple perspectives via interpretable machine-learning techniques.The proposed framework is anticipated to provide reliable and trustworthy decision support across various ITS applications.展开更多
Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantil...Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks.展开更多
In early December 2019,a new virus named“2019 novel coronavirus(2019-nCoV)”appeared in Wuhan,China.The disease quickly spread worldwide,resulting in the COVID-19 pandemic.In the currentwork,we will propose a novel f...In early December 2019,a new virus named“2019 novel coronavirus(2019-nCoV)”appeared in Wuhan,China.The disease quickly spread worldwide,resulting in the COVID-19 pandemic.In the currentwork,we will propose a novel fuzzy softmodal(i.e.,fuzzy-soft expert system)for early detection of COVID-19.Themain construction of the fuzzy-soft expert systemconsists of five portions.The exploratory study includes sixty patients(i.e.,fortymales and twenty females)with symptoms similar to COVID-19 in(Nanjing Chest Hospital,Department of Respiratory,China).The proposed fuzzy-soft expert systemdepended on five symptoms of COVID-19(i.e.,shortness of breath,sore throat,cough,fever,and age).We will use the algorithm proposed by Kong et al.to detect these patients who may suffer from COVID-19.In this way,the present system is beneficial to help the physician decide if there is any patient who has COVID-19 or not.Finally,we present the comparison between the present system and the fuzzy expert system.展开更多
The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault lo...The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.展开更多
Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly b...Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly based on traditional subjective methods,which fails to achieve high-resolution and high-frequency gridded forecasts based on multiple observation sources.In this paper,we propose a deep learning method called Thunderstorm Gusts TransU-net(TGTransUnet)to forecast thunderstorm gusts in North China based on multi-source gridded product data from the Institute of Urban Meteorology(IUM)with a lead time of 1 to 6 h.To determine the specific range of thunderstorm gusts,we combine three meteorological variables:radar reflectivity factor,lightning location,and 1-h maximum instantaneous wind speed from automatic weather stations(AWSs),and obtain a reasonable ground truth of thunderstorm gusts.Then,we transform the forecasting problem into an image-to-image problem in deep learning under the TG-TransUnet architecture,which is based on convolutional neural networks and a transformer.The analysis and forecast data of the enriched multi-source gridded comprehensive forecasting system for the period 2021–23 are then used as training,validation,and testing datasets.Finally,the performance of TG-TransUnet is compared with other methods.The results show that TG-TransUnet has the best prediction results at 1–6 h.The IUM is currently using this model to support the forecasting of thunderstorm gusts in North China.展开更多
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient...Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions.展开更多
Petroleum hydrocarbon pollution is a global concern,particularly in coastal environments.Polycyclic aromatic hydrocarbons(PAHs) are regarded as the most toxic components of petroleum hydrocarbons.In this study,the bio...Petroleum hydrocarbon pollution is a global concern,particularly in coastal environments.Polycyclic aromatic hydrocarbons(PAHs) are regarded as the most toxic components of petroleum hydrocarbons.In this study,the biomonitoring and ranking effects of petroleum hydrocarbons and PAHs on the marine fish model Oryzias melastigma embryos were determined in the Jiulong River Estuary(JRE) and its adjacent waters in China.The results showed that the levels of petroleum hydrocarbons from almost all sites met the primary standard for marine seawater quality,and the concentrations of the 16 priority PAHs in the surface seawater were lower compared with those in other coastal areas worldwide.A new fish expert system based on the embryotoxicity of O.melastigma(OME-FES) was developed and applied in the field to evaluate the biological effects of petroleum hydrocarbons and PAHs.The selected physiological index and molecular indicators in OME-FES were appropriate biomarkers for indicating the harmful effects of petroleum hydrocarbons and PAHs.The outcome of OME-FES revealed that the biological effect levels of the sampling sites ranged from level Ⅰ(no stress) to level Ⅲ(medium stress),which is further corroborated by the findings of nested analysis of variance(ANOVA) models.Our results suggest that the OME-FES is an effective tool for evaluating and ranking the biological effects of marine petroleum hydrocarbons and PAHs.This method may also be applied to evaluate other marine pollutants based on its framework.展开更多
Flood events occurrences and frequencies in the world are of immense worry for the stability of the economy and life safety. Africa continent is the third continent the most negatively affected by the flood events aft...Flood events occurrences and frequencies in the world are of immense worry for the stability of the economy and life safety. Africa continent is the third continent the most negatively affected by the flood events after Asia and Europe. Eastern Africa is the most hit in Africa. However, Africa continent is at the early stage in term of flood forecasting models development and implementation. Very few hydrological models for flood forecasting are available and implemented in Africa for the flood mitigation. And for the majority of the cases, they need to be improved because of the time evolution. Flash flood in Bamako (Mali) has been putting both human life and the economy in jeopardy. Studying this phenomenon, as to propose applicable solutions for its alleviation in Bamako is a great concern. Therefore, it is of upmost importance to know the existing scientific works related to this situation in Mali and elsewhere. The main aim was to point out the various solutions implemented by various local and international institutions, in order to fight against the flood events. Two types of methods are used for the flood events adaptation: the structural and non-structural methods. The structural methods are essentially based on the implementation of the structures like the dams, dykes, levees, etc. The problem of these methods is that they may reduce the volume of water that will inundate the area but are not efficient for the prediction of the coming floods and cannot alert the population with any lead time in advance. The non-structural methods are the one allowing to perform the prediction with acceptable lead time. They used the hydrological rainfall-runoff models and are the widely methods used for the flood adaptation. This review is more accentuated on the various types non-structural methods and their application in African countries in general and West African countries in particular with their strengths and weaknesses. Hydrologiska Byråns Vattenbalansavdelning (HBV), Hydrologic Engineer Center Hydrologic Model System (HEC-HMS) and Soil and Water Assessment Tool (SWAT) are the hydrological models that are the most widely used in West Africa for the purpose of flood forecasting. The easily way of calibration and the weak number of input data make these models appropriate for the West Africa region where the data are scarce and often with bad quality. These models when implemented and applied, can predict the coming floods, allow the population to adapt and mitigate the flood events and reduce considerably the impacts of floods especially in terms of loss of life.展开更多
Prediction skill for the seasonal tropical cyclone(TC)activity in the Northern Hemisphere is investigated using the coupled climate forecast system(version 1.0)of Nanjing University of Information Science and Technolo...Prediction skill for the seasonal tropical cyclone(TC)activity in the Northern Hemisphere is investigated using the coupled climate forecast system(version 1.0)of Nanjing University of Information Science and Technology(NUISTCFS1.0).This assessment is based on the seven-month(May to November)hindcasts consisting of nine ensemble members during 1982–2019.The predictions are compared with the Japanese 55-year Reanalysis and observed tropical storms in the Northern Hemisphere.The results show that the overall distributions of the TC genesis and track densities in model hindcasts agree well with the observations,although the seasonal mean TC frequency and accumulated cyclone energy(ACE)are underestimated in all basins due to the low resolution(T106)of the atmospheric component in the model.NUIST-CFS1.0 closely predicts the interannual variations of TC frequency and ACE in the North Atlantic(NA)and eastern North Pacific(ENP),which have a good relationship with indexes based on the sea surface temperature.In the western North Pacific(WNP),NUIST-CFS1.0 can closely capture ACE,which is significantly correlated with the El Ni?o–Southern Oscillation(ENSO),while it has difficulty forecasting the interannual variation of TC frequency in this area.When the WNP is further divided into eastern and western subregions,the model displays improved TC activity forecasting ability.Additionally,it is found that biases in predicted TC genesis locations lead to inaccurately represented TC–environment relationships,which may affect the capability of the model in reproducing the interannual variations of TC activity.展开更多
Lately,in modern smart power grids,energy demand for accurate forecast of electricity is gaining attention,with increased interest of research.This is due to the fact that a good energy demand forecast would lead to p...Lately,in modern smart power grids,energy demand for accurate forecast of electricity is gaining attention,with increased interest of research.This is due to the fact that a good energy demand forecast would lead to proper responses for electricity demand.In addition,proper energy demand forecast would ensure efficient planning of the electricity industry and is critical in the scheduling of the power grid capacity and management of the entire power network.As most power systems are been deregulated and with the rapid introduction and development of smart-metering technologies in Oman,new opportunities may arise considering the efficiency and reliability of the power system;like price-based demand response programs.These programs could either be a large scale for household,commercial or industrial users.However,excellent demand forecasting models are crucial for the deployment of these smart metering in the power grid based on good knowledge of the electricity market structure.Consequently,in this paper,an overview of the Oman regulatory regime,financial mechanism,price control,and distribution system security standard were presented.More so,the energy demand forecast in Oman was analysed,using the econometric model to forecasts its energy peak demand.The energy econometric analysis in this study describes the relationship between the growth of historical electricity consumption and macro-economic parameters(by region,and by tariff),considering a case study of Mazoon Electricity Distribution Company(MZEC),which is one of the major power distribution companies in Oman,for effective energy demand in the power grid.展开更多
Frequency deviation has to be controlled in power generation units when there arefluctuations in system frequency.With several renewable energy sources,wind energy forecasting is majorly focused in this work which is ...Frequency deviation has to be controlled in power generation units when there arefluctuations in system frequency.With several renewable energy sources,wind energy forecasting is majorly focused in this work which is a tough task due to its variations and uncontrollable nature.Whenever there is a mismatch between generation and demand,the frequency deviation may arise from the actual frequency 50 Hz(in India).To mitigate the frequency deviation issue,it is necessary to develop an effective technique for better frequency control in wind energy systems.In this work,heuristic Fuzzy Logic Based Controller(FLC)is developed for providing an effective frequency control support by modeling the complex behavior of the system to enhance the load forecasting in wind based hybrid power systems.Frequency control is applied to reduce the frequency deviation due tofluctuations and load prediction information using ANN(Artificial Neural Network)and SVM(Support Vector Machine)learning models.The performance analysis of the proposed method is done with different machine learning based approaches.The forecasting assessment is done over various climates with the aim to decrease the prediction errors and to demote the forecasting accuracy.Simulation results show that the Mean Absolute Percentage Error(MAPE),Root Mean Square Error(RMSE)and Normalized Mean Absolute Error(NMAE)values are scaled down by 41.1%,9.9%and 23.1%respectively in the proposed method while comparing with existing wavelet and BPN based approach.展开更多
In this paper, we propose a formal definition, general structure and work principle of the Neural Network Expert System (NNES) based on joint-type knowledge representation, and show a practical application example usi...In this paper, we propose a formal definition, general structure and work principle of the Neural Network Expert System (NNES) based on joint-type knowledge representation, and show a practical application example using NNES for forecasting the water invasion of coal mine.展开更多
Chemical cleaning and disinfection are crucial steps for eliminating infection in root canal treatment. However, irrigant selection or irrigation procedures are far from clear. The vapor lock effect in the apical regi...Chemical cleaning and disinfection are crucial steps for eliminating infection in root canal treatment. However, irrigant selection or irrigation procedures are far from clear. The vapor lock effect in the apical region has yet to be solved, impeding irrigation efficacy and resulting in residual infections and compromised treatment outcomes.展开更多
It is well-known that elevated low-density lipoprotein cholesterol(LDL-C)is a causal risk factor for atheroscler-otic cardiovascular disease(ASCVD),statins are cornerstone drugs for the cause-based treatment of ASCVD,...It is well-known that elevated low-density lipoprotein cholesterol(LDL-C)is a causal risk factor for atheroscler-otic cardiovascular disease(ASCVD),statins are cornerstone drugs for the cause-based treatment of ASCVD,which has created a new era for ASCVD therapy.However,statin intolerance is not clinically uncommon,which there are several issues with confu-sion and misunderstandings.Hence,a file named Chinese Expert Consensus on the Diagnosis and Management Strategy of Pa-tients With Statin Intolerance,like a navigator,has recently been published written by a team of experts from the Cardiovascular Metabolic Medicine Professional Committee,Expert Committee of the National Center for Cardiovascular Diseases aiming to en-hance the standardized clinical application of statins and improve the prevention and clinical outcome.In this article,author briefly summarized the key points of above consensus in order to helping to comprehending the content of the consensus sugges-tions.展开更多
基金This work was jointly supported by the National Natural Science Foundation of China(Grant Nos.41975137,42175012,and 41475097)the National Key Research and Development Program(Grant No.2018YFF0300103).
文摘Since the Beijing 2022 Winter Olympics was the first Winter Olympics in history held in continental winter monsoon climate conditions across complex terrain areas,there is a deficiency of relevant research,operational techniques,and experience.This made providing meteorological services for this event particularly challenging.The China Meteorological Administration(CMA)Earth System Modeling and Prediction Centre,achieved breakthroughs in research on short-and medium-term deterministic and ensemble numerical predictions.Several key technologies crucial for precise winter weather services during the Winter Olympics were developed.A comprehensive framework,known as the Operational System for High-Precision Weather Forecasting for the Winter Olympics,was established.Some of these advancements represent the highest level of capabilities currently available in China.The meteorological service provided to the Beijing 2022 Games also exceeded previous Winter Olympic Games in both variety and quality.This included achievements such as the“100-meter level,minute level”downscaled spatiotemporal resolution and forecasts spanning 1 to 15 days.Around 30 new technologies and over 60 kinds of products that align with the requirements of the Winter Olympics Organizing Committee were developed,and many of these techniques have since been integrated into the CMA’s operational national forecasting systems.These accomplishments were facilitated by a dedicated weather forecasting and research initiative,in conjunction with the preexisting real-time operational forecasting systems of the CMA.This program represents one of the five subprograms of the WMO’s high-impact weather forecasting demonstration project(SMART2022),and continues to play an important role in their Regional Association(RA)II Research Development Project(Hangzhou RDP).Therefore,the research accomplishments and meteorological service experiences from this program will be carried forward into forthcoming highimpact weather forecasting activities.This article provides an overview and assessment of this program and the operational national forecasting systems.
文摘The three largest earthquakes in northern California since 1849 were preceded by increased decadal activity for moderate-size shocks along surrounding nearby faults. Increased seismicity, double-difference precise locations of earthquakes since 1968, geodetic data and fault offsets for the 1906 great shock are used to re-examine the timing and locations of possible future large earthquakes. The physical mechanisms of regional faults like the Calaveras, Hayward and Sargent, which exhibit creep, differ from those of the northern San Andreas, which is currently locked and is not creeping. Much decadal forerunning activity occurred on creeping faults. Moderate-size earthquakes along those faults became more frequent as stresses in the region increased in the latter part of the cycle of stress restoration for major and great earthquakes along the San Andreas. They may be useful for decadal forecasts. Yearly to decadal forecasts, however, are based on only a few major to great events. Activity along closer faults like that in the two years prior to the 1989 Loma Prieta shock needs to be examined for possible yearly forerunning changes to large plate boundary earthquakes. Geodetic observations are needed to focus on identifying creeping faults close to the San Andreas. The distribution of moderate-size earthquakes increased significantly since 1990 along the Hayward fault but not adjacent to the San Andreas fault to the south of San Francisco compared to what took place in the decades prior to the three major historic earthquakes in the region. It is now clear from a re-examination of the 1989 mainshock that the increased level of moderate-size shocks in the one to two preceding decades occurred on nearby East Bay faults. Double-difference locations of small earthquakes provide structural information about faults in the region, especially their depths. The northern San Andreas fault is divided into several strongly coupled segments based on differences in seismicity.
基金supported by the Shenzhen Key Discipline of Medicine,the Key Specialty of Public Health(SZXK064)the research on intelligent prediction,early warning,prevention,and control decision support system of Infectious diseases based on multi-source big data(Key Project of Basic Research of Shenzhen Science and Technology Plan,JCYJ20200109150715644)+3 种基金the research on comprehensive monitoring system for emerging infectious diseases and key insect-borne pathogens(supported by the Basic Research Funds of Central Public Welfare Research Institutes,Chinese Academy of Medical Sciences,2020-PT330-006)the research on new precision diagnosis technology for emerging infectious diseases and public emergency prevention and control system(Shenzhen Sustainable Development Science and Technology Project,KCXFZ202002011006190)the Sanming Project of Medicine in Shenzhen(Shenzhen Science and Technology Innovation Committee,SZSM202011008)the research and development of key technologies for rapid detection kit of novel coronavirus variant(Key Project of Shenzhen Innovation and Entrepreneurship Plan,JSGG20210901145004012).
文摘China has been continuously improving its monitoring methods and strategies to address key infectious diseases(KIDs).After the severe acute respiratory syndrome epidemic in 2003,China established a comprehensive report-ing system for infectious diseases(IDs)and public health emergencies.The relatively lagging warning thresholds,limited warning information,and outdated warning technology are insufficient to meet the needs of comprehensive monitoring for modern KIDs.Strengthening early monitoring and warning capabilities to enhance the public health system has become a top priority,with increasing demand for early warning thresholds,information,and tech-niques,thanks to constant innovation and development in molecular biology,bioinformatics,artificial intelligence,and other identification and analysis technologies.A panel of 31 experts has recommended a fourth-generation comprehensive surveillance system targeting KIDs(41 notifiable diseases and emerging IDs).The aim of this surveil-lance system is to systematically monitor the epidemiology and causal pathogens of KIDs in hosts such as humans,animals,and vectors,along with associated environmental pathogens.By integrating factors influencing epidemic spread and risk assessment,the surveillance system can serve to detect,predict,and provide early warnings for the occurrence,development,variation,and spread of known or novel KIDs.Moreover,we recommend comprehensive ID monitoring based on the fourth-generation surveillance system,along with a data-integrated monitoring and early warning platform and a consortium pathogen detection technology system.This series of considerations is based on systematic and comprehensive monitoring across multiple sectors,dimensions,factors,and pathogens that is sup-ported by data integration and connectivity.This expert consensus will provides an opportunity for collaboration in various fields and relies on interdisciplinary application to enhance comprehensive monitoring,prediction,and early warning capabilities for the next generation of ID surveillance.This expert consensus will serve as a reference for ID prevention and control as well as other related activities.
文摘This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies.
基金supported by Hunan Province Enterprise Technology Innovation and Entrepreneurship Team Support Program Project,Hunan Province Science and Technology Innovation Leading Talent Project[2023RC1088]Hunan Province Science and Technology Talent Support Project[2023TJ-Z10].
文摘Purpose-The aim of this work is to research and design an expert diagnosis system for rail vehicle driven by data mechanism models.Design/methodology/approach-The expert diagnosis system utilizes statistical and deep learning methods to model the real-time status and historical data features of rail vehicle.Based on data mechanism models,it predicts the lifespan of key components,evaluates the health status of the vehicle and achieves intelligent monitoring and diagnosis of rail vehicle.Findings-The actual operation effect of this system shows that it has improved the intelligent level of the rail vehicle monitoring system,which helps operators to monitor the operation of vehicle online,predict potential risks and faults of vehicle and ensure the smooth and safe operation of vehicle.Originality/value-This system improves the efficiency of rail vehicle operation,scheduling and maintenance through intelligent monitoring and diagnosis of rail vehicle.
基金funded by the National Key R&D Program of China(Grant No.2023YFE0106800)the Humanity and Social Science Youth Foundation of Ministry of Education of China(Grant No.22YJC630109).
文摘Traffic flow forecasting constitutes a crucial component of intelligent transportation systems(ITSs).Numerous studies have been conducted for traffic flow forecasting during the past decades.However,most existing studies have concentrated on developing advanced algorithms or models to attain state-of-the-art forecasting accuracy.For real-world ITS applications,the interpretability of the developed models is extremely important but has largely been ignored.This study presents an interpretable traffic flow forecasting framework based on popular tree-ensemble algorithms.The framework comprises multiple key components integrated into a highly flexible and customizable multi-stage pipeline,enabling the seamless incorporation of various algorithms and tools.To evaluate the effectiveness of the framework,the developed tree-ensemble models and another three typical categories of baseline models,including statistical time series,shallow learning,and deep learning,were compared on three datasets collected from different types of roads(i.e.,arterial,expressway,and freeway).Further,the study delves into an in-depth interpretability analysis of the most competitive tree-ensemble models using six categories of interpretable machine learning methods.Experimental results highlight the potential of the proposed framework.The tree-ensemble models developed within this framework achieve competitive accuracy while maintaining high inference efficiency similar to statistical time series and shallow learning models.Meanwhile,these tree-ensemble models offer interpretability from multiple perspectives via interpretable machine-learning techniques.The proposed framework is anticipated to provide reliable and trustworthy decision support across various ITS applications.
基金supported by the National Natural Science Foundation of China (Project No.42375192)the China Meteorological Administration Climate Change Special Program (CMA-CCSP+1 种基金Project No.QBZ202315)support by the Vector Stiftung through the Young Investigator Group"Artificial Intelligence for Probabilistic Weather Forecasting."
文摘Despite the maturity of ensemble numerical weather prediction(NWP),the resulting forecasts are still,more often than not,under-dispersed.As such,forecast calibration tools have become popular.Among those tools,quantile regression(QR)is highly competitive in terms of both flexibility and predictive performance.Nevertheless,a long-standing problem of QR is quantile crossing,which greatly limits the interpretability of QR-calibrated forecasts.On this point,this study proposes a non-crossing quantile regression neural network(NCQRNN),for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing.The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer,which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer,through a triangular weight matrix with positive entries.The empirical part of the work considers a solar irradiance case study,in which four years of ensemble irradiance forecasts at seven locations,issued by the European Centre for Medium-Range Weather Forecasts,are calibrated via NCQRNN,as well as via an eclectic mix of benchmarking models,ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models.Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration,amongst all competitors.Furthermore,the proposed conception to resolve quantile crossing is remarkably simple yet general,and thus has broad applicability as it can be integrated with many shallow-and deep-learning-based neural networks.
文摘In early December 2019,a new virus named“2019 novel coronavirus(2019-nCoV)”appeared in Wuhan,China.The disease quickly spread worldwide,resulting in the COVID-19 pandemic.In the currentwork,we will propose a novel fuzzy softmodal(i.e.,fuzzy-soft expert system)for early detection of COVID-19.Themain construction of the fuzzy-soft expert systemconsists of five portions.The exploratory study includes sixty patients(i.e.,fortymales and twenty females)with symptoms similar to COVID-19 in(Nanjing Chest Hospital,Department of Respiratory,China).The proposed fuzzy-soft expert systemdepended on five symptoms of COVID-19(i.e.,shortness of breath,sore throat,cough,fever,and age).We will use the algorithm proposed by Kong et al.to detect these patients who may suffer from COVID-19.In this way,the present system is beneficial to help the physician decide if there is any patient who has COVID-19 or not.Finally,we present the comparison between the present system and the fuzzy expert system.
基金the National Key Research and Development Program of China under Grant 2021YFB3301300the National Natural Science Foundation of China under Grant 62203213+1 种基金the Natural Science Foundation of Jiangsu Province under Grant BK20220332the Open Project Program of Fujian Provincial Key Laboratory of Intelligent Identification and Control of Complex Dynamic System under Grant 2022A0004.
文摘The reliable operation of high-speed wire rod finishing mills is crucial in the steel production enterprise.As complex system-level equipment,it is difficult for high-speed wire rod finishing mills to realize fault location and real-time monitoring.To solve the above problems,an expert experience and data-driven-based hybrid fault diagnosis method for high-speed wire rod finishing mills is proposed in this paper.First,based on its mechanical structure,time and frequency domain analysis are improved in fault feature extraction.The approach of combining virtual value,peak value with kurtosis value index,is adopted in time domain analysis.Speed adjustment and side frequency analysis are proposed in frequency domain analysis to obtain accurate component characteristic frequency and its corresponding sideband.Then,according to time and frequency domain characteristics,fault location based on expert experience is proposed to get an accurate fault result.Finally,the proposed method is implemented in the equipment intelligent diagnosis system.By taking an equipment fault on site,for example,the effectiveness of the proposed method is illustrated in the system.
基金supported in part by the Beijing Natural Science Foundation(Grant No.8222051)the National Key R&D Program of China(Grant No.2022YFC3004103)+2 种基金the National Natural Foundation of China(Grant Nos.42275003 and 42275012)the China Meteorological Administration Key Innovation Team(Grant Nos.CMA2022ZD04 and CMA2022ZD07)the Beijing Science and Technology Program(Grant No.Z221100005222012).
文摘Thunderstorm gusts are a common form of severe convective weather in the warm season in North China,and it is of great importance to correctly forecast them.At present,the forecasting of thunderstorm gusts is mainly based on traditional subjective methods,which fails to achieve high-resolution and high-frequency gridded forecasts based on multiple observation sources.In this paper,we propose a deep learning method called Thunderstorm Gusts TransU-net(TGTransUnet)to forecast thunderstorm gusts in North China based on multi-source gridded product data from the Institute of Urban Meteorology(IUM)with a lead time of 1 to 6 h.To determine the specific range of thunderstorm gusts,we combine three meteorological variables:radar reflectivity factor,lightning location,and 1-h maximum instantaneous wind speed from automatic weather stations(AWSs),and obtain a reasonable ground truth of thunderstorm gusts.Then,we transform the forecasting problem into an image-to-image problem in deep learning under the TG-TransUnet architecture,which is based on convolutional neural networks and a transformer.The analysis and forecast data of the enriched multi-source gridded comprehensive forecasting system for the period 2021–23 are then used as training,validation,and testing datasets.Finally,the performance of TG-TransUnet is compared with other methods.The results show that TG-TransUnet has the best prediction results at 1–6 h.The IUM is currently using this model to support the forecasting of thunderstorm gusts in North China.
基金supported by the Natural Science Foundation of China(Grant Nos.42088101 and 42205149)Zhongwang WEI was supported by the Natural Science Foundation of China(Grant No.42075158)+1 种基金Wei SHANGGUAN was supported by the Natural Science Foundation of China(Grant No.41975122)Yonggen ZHANG was supported by the National Natural Science Foundation of Tianjin(Grant No.20JCQNJC01660).
文摘Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions.
基金The Scientific Research Foundation of the Third Institute of Oceanography,Ministry of Natural Resources under contract Nos 2020014 and 2020017the National Natural Science Foundation of China under contract No.41977211the National Program on Global Change and Air-Sea Interaction under contract No.GASI-02-SCS-YDsum。
文摘Petroleum hydrocarbon pollution is a global concern,particularly in coastal environments.Polycyclic aromatic hydrocarbons(PAHs) are regarded as the most toxic components of petroleum hydrocarbons.In this study,the biomonitoring and ranking effects of petroleum hydrocarbons and PAHs on the marine fish model Oryzias melastigma embryos were determined in the Jiulong River Estuary(JRE) and its adjacent waters in China.The results showed that the levels of petroleum hydrocarbons from almost all sites met the primary standard for marine seawater quality,and the concentrations of the 16 priority PAHs in the surface seawater were lower compared with those in other coastal areas worldwide.A new fish expert system based on the embryotoxicity of O.melastigma(OME-FES) was developed and applied in the field to evaluate the biological effects of petroleum hydrocarbons and PAHs.The selected physiological index and molecular indicators in OME-FES were appropriate biomarkers for indicating the harmful effects of petroleum hydrocarbons and PAHs.The outcome of OME-FES revealed that the biological effect levels of the sampling sites ranged from level Ⅰ(no stress) to level Ⅲ(medium stress),which is further corroborated by the findings of nested analysis of variance(ANOVA) models.Our results suggest that the OME-FES is an effective tool for evaluating and ranking the biological effects of marine petroleum hydrocarbons and PAHs.This method may also be applied to evaluate other marine pollutants based on its framework.
文摘Flood events occurrences and frequencies in the world are of immense worry for the stability of the economy and life safety. Africa continent is the third continent the most negatively affected by the flood events after Asia and Europe. Eastern Africa is the most hit in Africa. However, Africa continent is at the early stage in term of flood forecasting models development and implementation. Very few hydrological models for flood forecasting are available and implemented in Africa for the flood mitigation. And for the majority of the cases, they need to be improved because of the time evolution. Flash flood in Bamako (Mali) has been putting both human life and the economy in jeopardy. Studying this phenomenon, as to propose applicable solutions for its alleviation in Bamako is a great concern. Therefore, it is of upmost importance to know the existing scientific works related to this situation in Mali and elsewhere. The main aim was to point out the various solutions implemented by various local and international institutions, in order to fight against the flood events. Two types of methods are used for the flood events adaptation: the structural and non-structural methods. The structural methods are essentially based on the implementation of the structures like the dams, dykes, levees, etc. The problem of these methods is that they may reduce the volume of water that will inundate the area but are not efficient for the prediction of the coming floods and cannot alert the population with any lead time in advance. The non-structural methods are the one allowing to perform the prediction with acceptable lead time. They used the hydrological rainfall-runoff models and are the widely methods used for the flood adaptation. This review is more accentuated on the various types non-structural methods and their application in African countries in general and West African countries in particular with their strengths and weaknesses. Hydrologiska Byråns Vattenbalansavdelning (HBV), Hydrologic Engineer Center Hydrologic Model System (HEC-HMS) and Soil and Water Assessment Tool (SWAT) are the hydrological models that are the most widely used in West Africa for the purpose of flood forecasting. The easily way of calibration and the weak number of input data make these models appropriate for the West Africa region where the data are scarce and often with bad quality. These models when implemented and applied, can predict the coming floods, allow the population to adapt and mitigate the flood events and reduce considerably the impacts of floods especially in terms of loss of life.
基金supported in part by the National Key Research and Development Program of China(Grant No.2020YFA0608000)the Nature Science Foundation of China(Grant Nos.42005002,42030605,and 42105003)。
文摘Prediction skill for the seasonal tropical cyclone(TC)activity in the Northern Hemisphere is investigated using the coupled climate forecast system(version 1.0)of Nanjing University of Information Science and Technology(NUISTCFS1.0).This assessment is based on the seven-month(May to November)hindcasts consisting of nine ensemble members during 1982–2019.The predictions are compared with the Japanese 55-year Reanalysis and observed tropical storms in the Northern Hemisphere.The results show that the overall distributions of the TC genesis and track densities in model hindcasts agree well with the observations,although the seasonal mean TC frequency and accumulated cyclone energy(ACE)are underestimated in all basins due to the low resolution(T106)of the atmospheric component in the model.NUIST-CFS1.0 closely predicts the interannual variations of TC frequency and ACE in the North Atlantic(NA)and eastern North Pacific(ENP),which have a good relationship with indexes based on the sea surface temperature.In the western North Pacific(WNP),NUIST-CFS1.0 can closely capture ACE,which is significantly correlated with the El Ni?o–Southern Oscillation(ENSO),while it has difficulty forecasting the interannual variation of TC frequency in this area.When the WNP is further divided into eastern and western subregions,the model displays improved TC activity forecasting ability.Additionally,it is found that biases in predicted TC genesis locations lead to inaccurately represented TC–environment relationships,which may affect the capability of the model in reproducing the interannual variations of TC activity.
文摘Lately,in modern smart power grids,energy demand for accurate forecast of electricity is gaining attention,with increased interest of research.This is due to the fact that a good energy demand forecast would lead to proper responses for electricity demand.In addition,proper energy demand forecast would ensure efficient planning of the electricity industry and is critical in the scheduling of the power grid capacity and management of the entire power network.As most power systems are been deregulated and with the rapid introduction and development of smart-metering technologies in Oman,new opportunities may arise considering the efficiency and reliability of the power system;like price-based demand response programs.These programs could either be a large scale for household,commercial or industrial users.However,excellent demand forecasting models are crucial for the deployment of these smart metering in the power grid based on good knowledge of the electricity market structure.Consequently,in this paper,an overview of the Oman regulatory regime,financial mechanism,price control,and distribution system security standard were presented.More so,the energy demand forecast in Oman was analysed,using the econometric model to forecasts its energy peak demand.The energy econometric analysis in this study describes the relationship between the growth of historical electricity consumption and macro-economic parameters(by region,and by tariff),considering a case study of Mazoon Electricity Distribution Company(MZEC),which is one of the major power distribution companies in Oman,for effective energy demand in the power grid.
文摘Frequency deviation has to be controlled in power generation units when there arefluctuations in system frequency.With several renewable energy sources,wind energy forecasting is majorly focused in this work which is a tough task due to its variations and uncontrollable nature.Whenever there is a mismatch between generation and demand,the frequency deviation may arise from the actual frequency 50 Hz(in India).To mitigate the frequency deviation issue,it is necessary to develop an effective technique for better frequency control in wind energy systems.In this work,heuristic Fuzzy Logic Based Controller(FLC)is developed for providing an effective frequency control support by modeling the complex behavior of the system to enhance the load forecasting in wind based hybrid power systems.Frequency control is applied to reduce the frequency deviation due tofluctuations and load prediction information using ANN(Artificial Neural Network)and SVM(Support Vector Machine)learning models.The performance analysis of the proposed method is done with different machine learning based approaches.The forecasting assessment is done over various climates with the aim to decrease the prediction errors and to demote the forecasting accuracy.Simulation results show that the Mean Absolute Percentage Error(MAPE),Root Mean Square Error(RMSE)and Normalized Mean Absolute Error(NMAE)values are scaled down by 41.1%,9.9%and 23.1%respectively in the proposed method while comparing with existing wavelet and BPN based approach.
文摘In this paper, we propose a formal definition, general structure and work principle of the Neural Network Expert System (NNES) based on joint-type knowledge representation, and show a practical application example using NNES for forecasting the water invasion of coal mine.
文摘Chemical cleaning and disinfection are crucial steps for eliminating infection in root canal treatment. However, irrigant selection or irrigation procedures are far from clear. The vapor lock effect in the apical region has yet to be solved, impeding irrigation efficacy and resulting in residual infections and compromised treatment outcomes.
基金supported by CAMS Innovation Fund for Medical Sciences(CIFMS,2021-I2M-C&TB-030).
文摘It is well-known that elevated low-density lipoprotein cholesterol(LDL-C)is a causal risk factor for atheroscler-otic cardiovascular disease(ASCVD),statins are cornerstone drugs for the cause-based treatment of ASCVD,which has created a new era for ASCVD therapy.However,statin intolerance is not clinically uncommon,which there are several issues with confu-sion and misunderstandings.Hence,a file named Chinese Expert Consensus on the Diagnosis and Management Strategy of Pa-tients With Statin Intolerance,like a navigator,has recently been published written by a team of experts from the Cardiovascular Metabolic Medicine Professional Committee,Expert Committee of the National Center for Cardiovascular Diseases aiming to en-hance the standardized clinical application of statins and improve the prevention and clinical outcome.In this article,author briefly summarized the key points of above consensus in order to helping to comprehending the content of the consensus sugges-tions.