Dark mudstones and shales of the Carboniferous Jiusi Formation are widely developed in northern Guizhou and Yunnan provinces, SW China. However, the distribution, reservoir characterization, and exploration potential ...Dark mudstones and shales of the Carboniferous Jiusi Formation are widely developed in northern Guizhou and Yunnan provinces, SW China. However, the distribution, reservoir characterization, and exploration potential of organic-rich shales in this area are yet to be quantified, thus limiting the prospect of shale gas in this area. This study investigates the basic geological conditions of Jiusi shale gas, using core data, well-logs, and some other test data, obtaining the following results. The organic-rich shales are mainly composed of deltaic-to-shallow-shelf deposits, with thickness ranging from 0 to 450 m, and above 350 m around the subsidence center. The organic matter is mainly type Ⅱ kerogen with TOC content of mostly 1%–2%, indicating a moderate maturity. The argillaceous shale reservoirs are indicative of strong heterogeneity, high clay minerals content, low porosity, low permeability, high specific surface area, and relatively developed secondary porosity. The gas-log anomaly intervals obtained from the survey wells have a cumulative thickness that is apparently greater than 200 m, and a few shale intervals showing high desorbed and adsorbed gas contents. Due to complex structures in the study area, conditions responsible for shale gas occurrence and trapping are generally moderate. However, areas having wide and gentle folds with moderate depth of burial reveals relatively favorable conditions of hydrocarbon traps. In contrast with typical marine-continental transitional shales, the Jiusi shale have better geological conditions for shale gas preservation. The analysis of the geological framework and hydrocarbon potential of Carboniferous Jiusi Formation provide more insight for the exploration of Carboniferous shale gas in southern China.展开更多
The Albertine Graben in western Uganda is a Mesozoic-Cenozoic rift basin with petroleum exploration potential. A fundamental evaluation of petroleum potential of the graben is given based on field research, data proce...The Albertine Graben in western Uganda is a Mesozoic-Cenozoic rift basin with petroleum exploration potential. A fundamental evaluation of petroleum potential of the graben is given based on field research, data processing of gravity and magnetism, analysis of graben structure, geochemistry, reservoir and composition research. The basin has a double-layered framework and a large thickness of sediments. Gravity highs shown in a residual anomaly map might indicate central uplift zones. There exist at least two sets of mature or low-maturity source rocks corresponding to a certain source rock in the Cretaceous or Paleogene and Neogene strata. The graben has basement rock with potential reservoirs and Tertiary sandstone reservoirs and thus has petroleum exploration potential.展开更多
A series of significant discoveries in marine carbonate rocks show great petroleum exploration potential in the Tarim Basin. However, the oil and gas fields discovered in the carbonate rocks are mainly distributed aro...A series of significant discoveries in marine carbonate rocks show great petroleum exploration potential in the Tarim Basin. However, the oil and gas fields discovered in the carbonate rocks are mainly distributed around the Manjiaer Sag in the eastern Tarim Basin. Some explorations occurred and no oil or gas field was discovered around the Awati Sag in the western Tarim Basin. Information from wells and outcrops reveals that there are excellent oil and gas source rock conditions around the Awati Sag. Transformed reef-shoal reservoirs could be formed in the Ordovician carbonate rocks with paleo-geographic background and hydrothermal conditions. Therefore, it is necessary to make a systematical study and overall evaluation of the potential of the periphery of the Awati Sag in terms of source rock evolution, resource potential, high-grade reservoir formation and distribution, and main factors controlling hydrocarbon migration and accumulation.展开更多
Large-scale oil exploration has been done and large quantities of oil-gas fields have been found in the northern shelf basin of the South China Sea for more than 20 years. The tectonic oil-gas pools are the main type....Large-scale oil exploration has been done and large quantities of oil-gas fields have been found in the northern shelf basin of the South China Sea for more than 20 years. The tectonic oil-gas pools are the main type. With the exploration to be deepened, looking for atectonic oil-gas pools is listed in China's exploration strategy. There are advantages for the forming of atectonic oil-gas pools in the northern shelf basin of the South China Sea. Because the level of water has been frequently changing within all historical periods, lithozones are changed alternately in both vertical and lateral directions and formed lithologic deposition especially at low water level stages, such as the low-lying fans of basin-floor fans and slope fans. Due to frequent tectonic movement within all historical periods, many structural surfaces and structural unconformities were formed. At the same time, they also formed many kinds of structural unconformity oil-gas pools. According to our exploration and research, the promising areas of atectonic reservoirs within marine basins include: (1) the basin-floor fan of the deep water district, such as the central depression of the Southeast Qiong basin and Baiyun sag in the Zhujiangkou basin; (2) the frontal area of the large ancient delta, such as the Lingao structural belt in the Yingge Sea basin and Huizhou sag in the Zhujiangkou basin; (3) the unconformity pinchout belt or denudation belt in the slope area and the uplift area, for instance, the Yingdong slope belt in the Yingge Sea basin and Yacheng 13-1 structural belt in the southeast Qiong basin. All this proves that the prospects for atectonic oil-gas pools in the northern shelf basin of the South China Sea are very broad.展开更多
The Tamtsag Basin is located in the extreme eastern portion of the Mongolia. The Basin and its counterpart in China (the Hailar Basin) are united a whole basin on the structural setting. In recent years, the Tamtsag B...The Tamtsag Basin is located in the extreme eastern portion of the Mongolia. The Basin and its counterpart in China (the Hailar Basin) are united a whole basin on the structural setting. In recent years, the Tamtsag Basin attracts more and more attention with the important exploration discovered in the 19th block by SOCO and in Hailar Basin of China. This paper discusses the exploration potential of Tamtsag Basin from the viewpoint of petroleum geology.展开更多
Based on outcrop,seismic and drilling data,the main regional unconformities in the Sichuan Basin and their controls on hydrocarbon accumulation were systematically studied.Three findings are obtained.First,six regiona...Based on outcrop,seismic and drilling data,the main regional unconformities in the Sichuan Basin and their controls on hydrocarbon accumulation were systematically studied.Three findings are obtained.First,six regional stratigraphic unconformities are mainly developed in the Sichuan Basin,from the bottom up which are between pre-Sinian and Sinian,between Sinian and Cambrian,between pre-Permian and Permian,between middle and upper Permian,between middle and upper Triassic,and between Triassic and Jurassic.Especially,16 of 21l conventional(and tight)gas fields discovered are believed to have formed in relation to regional unconformities.Second,regional unconformity mainly controls hydrocarbon accumulation from five aspects:(1)The porosity and permeability of reservoirs under the unconformity are improved through weathering crust karstification to form large-scale karst reservoirs;(2)Good source-reservoir-caprock assemblage can form near the unconformity,which provides a basis for forming large gas field;(3)Regional unconformity may lead to stratigraphic pinch-out and rugged ancient landform,giving rise to a large area of stratigraphic and lithologic trap groups;(4)Regional unconformity provides a dominant channel for lateral migration of oil and gas;and(5)Regional unconformity is conducive to large-scale accumulation of oil and gas.Third,the areas related to regional unconformities are the exploration focus of large gas fields in the Sichuan Basin.The pre-Sinian is found with source rocks,reservoir rocks and other favorable conditions for the formation of large gas fields,and presents a large exploration potential.Thus,it is expected to be an important strategic replacement.展开更多
This work extensively investigated global tight sandstone gas, and geologically and geochemically analyzed the tight sandstone gas in China's Ordos, Sichuan, and Tarim basins. We compared typical tight sandstone gas ...This work extensively investigated global tight sandstone gas, and geologically and geochemically analyzed the tight sandstone gas in China's Ordos, Sichuan, and Tarim basins. We compared typical tight sandstone gas in China with that in North America. We proposed six conditions for the formation of China's tight sandstone gas, and illustrated the geological characteristics of tight sandstone gas. In China, gas-bearing tight sandstones were mainly deposited in continental lake deltas and marine-terrigenous facies basin environments, associated with coal-measure strata, and were mostly buried deeper than 2000 in under a formation pressure of 20-30 MPa, with pressure coefficients varying from overpressure to negative pressure. In other countries, tight gas bearing sandstones were dominantly deposited in marine to marine-terrigenous facies environments, occurred in coal-measure strata, and were mostly buried shallower than 2000 m in low-pressure systems. We systematically analyzed tight sandstone gas in the Ordos, Sichuan, and Tarim basins in terms of chemical compositions, geochemical characteristics of carbon isotopes, origins, and sources. Tight sandstone gas in China usually has a hydrocarbon content of 〉95%, with CH4 content 〉90%, and a generally higher dry coefficient. In the three above-mentioned large tight sandstone gas regions,δ13C1 and δJ3C2 mainly ranges from -42%o to -28%o and from -28%o to -21%o, respectively. Type III coal-measure source rocks that closely coexist with tight reservoirs are developed extensively in these gas regions. The organic petrology of source rocks and the carbon isotope compositions of gas indicate that tight sandstone gas in China is dominantly coal-derived gas generated by coal-measure strata. Our analysis of carbon isotope series shows that local isotope reversals are mainly caused by the mixing of gases of different maturities and that were generated at different stages. With increasing maturity, the reversal tendency becomes more apparent. Moreover, natural gas with medium-low maturity (e.g., Xujiahe Formation natural gas in the Sichuan Basin) presents an apparent reversal at a low-maturity stage, a normal series at a medium -maturity stage, and a reversal tendency again at a high-maturity stage. Finally, we proposed four conditions for preferred tight sandstone gas "sweep spots," and illustrated the recoverable reserves, proven reserves, production, and exploration prospects of tight sandstone gas. The geological and geochemical characteristics, origins, sources, and exploration potential of tight sandstone gas in China from our research will be instructive for the future evaluation, prediction, and exploration of tight sandstone gas in China and abroad.展开更多
In the traditional views on developmental biology, the process of a mammal from a zygote to. an adult individual follows continuous changes of space and time environments and is the result of different expressions of ...In the traditional views on developmental biology, the process of a mammal from a zygote to. an adult individual follows continuous changes of space and time environments and is the result of different expressions of target genes. It has long been known that this process is irreversible and the terminal differentiated adult cells, such as cardiac myocytes and neurons, will not divide and differentiate. But recent reports on the two hottest fields - cloning medicine and stem cell biology doubted these concepts. This may lead to a further understanding of the potentiality of mammal development and may provide great chances for commercial and clinical practice.展开更多
The giant potash deposit on the Khorat Plateau is one of the most promising targets for exploitation of potassium salts.So far,many researches and geologic survey have been conducted on the giant potash deposits.Hence...The giant potash deposit on the Khorat Plateau is one of the most promising targets for exploitation of potassium salts.So far,many researches and geologic survey have been conducted on the giant potash deposits.Hence,it is necessary to make an overall review on the potash deposits.The potash deposit on the Khorat Plateau was formed during the Middle to Late Cretaceous,during which seawater was enriched in Ca2+and depleted in SO42-compared with those of modern seawater.In addition to seawater,continental water and hydrothermal fluids could have affected the evaporite basins.The seawater was probably derived from Tethys ocean,and the brine should have evaporated to some extent before entering into the basin systems based on the evidence of absence of carbonates and unproportionate sulphate compared with chloride salts.The paleo-climate during Middle to Late Cretaceous was characterized as high temperature and extremely arid environment,which is favourable for deposition of potassium-magnesium saline minerals.The major saline minerals are of anhydrite,halite,carnallite,sylvite and,tachyhydrite,with trace amounts of borates.The resources of the potash deposit on the Khorat Plateau could be approximately as much as 400×109 t of carnallite and 7×109 t of sylvite.The evaporite sequences have been deformed and altered by postdepositinal processes,including tectonic movements and chemical alteration.Salt domes were formed in the postdepositional processes.Based on the analyses of geophysical surveys and drilling projects,high-quality sylvinite ores are commonly found at the flanks of those salt domes due to incongruent dissolution of carnallite.The furure potential prospecting areas for the highquality sylvinite ores would be on the edges of the Khorat Plateau.展开更多
As the most important gold producer in China,the Northwest Jiaodong Peninsula is famous for its large gold deposits.In recent years,the discovery of gold mineralization has reached a depth of 4000 m below the surface ...As the most important gold producer in China,the Northwest Jiaodong Peninsula is famous for its large gold deposits.In recent years,the discovery of gold mineralization has reached a depth of 4000 m below the surface in this region.It has attracted significant interest from explorers about the prospecting potential at greater depths.Besides,the current deep drilling shows that the prospecting effect in the west portion is better than the region to the east.Does it imply that there is a difference in prospecting potential between the east and the west?This paper seeks to address the issue through fission track thermochronology on apatite and zircon to reveal the temperature-time evolution relationship of rock mass and to inverts their thermal evolution history.In addition,this study analyzes the transformation of ore deposits after mineralization,quantitatively calculates the uplift-erosion rate of rock mass,and summarizes the preservation law of ore deposits.Based on the thermal history simulation of the apatite fission track,our results show that the Guocheng gold belt has experienced three stages of thermal evolution:108-74,74-27,and 27-0 Ma.The uplift and cooling processes of the threestage tectonic uplift events are the results of multi-stage Pacific plate accretion.The calculated total denudation depth of the gold deposit in the Guocheng gold belt from Cretaceous to the present is about 3.4-5.3 km.The metallogenic depth of the ore body in the gold belt is 5.6-8.0 km,which indicates that the ore body in the Guocheng gold belt has suffered a significant degree of denudation.It is speculated that the location with less denudation in the southwest has greater prospecting potential.Our results quantitatively identify the uplift and denudation of the deposit after mineralization,which provides a new theoretical reference for regional mineralization,deep prospecting and exploration.展开更多
At the initial stage of subtle reservoir exploration in the shallow to medium formations of the Taibei Sag, Tuha Basin, so far, three kinds of subtle reservoirs (stratigraphic, lithologic and structural-lithologic res...At the initial stage of subtle reservoir exploration in the shallow to medium formations of the Taibei Sag, Tuha Basin, so far, three kinds of subtle reservoirs (stratigraphic, lithologic and structural-lithologic reservoirs) have been found. Since both the amount and reserve of the discovered subtle reservoirs are small, a great exploration potential remains in the Taibei Sag. The shallow to medium formations in the west of the Taibei Sag were divided into three second-order sequences and ten third-order sequences, of which the rising cyclothems of SQ(J2q) and SQ8 (J2s2) datum level are major exploration targets for the subtle reservoirs (lithologic). The depositional systems of Qiquanhu and Subashi braided river delta were developed there, where the sedimentary sand body is dominated by the regional slopes and slope break belts. There are four main modes the formation of lithologic traps: deltaic front onlap on the slope belt, deltaic front toplap on the slope break belt, lately tilted frontal sand body and sublacustrine fan—slope fan on the slope break belt, of which the first three modes are the major styles of the formation of subtle reservoirs. Major targets for subtle reservoir exploration in the near future include Putaogou Member on the north slope of Huoyanshan, the east slope of Pubei, the nose-like palaeohigh regions of Huobei, Subashi and Lianmuqin, around the Shengbei secondary sag.展开更多
The northern area of the South Yellow Sea, located in the offshore region of China, resulted from the continental-continental collision orogeny during the Mesozoic and can be divided into four stages in terms of tecto...The northern area of the South Yellow Sea, located in the offshore region of China, resulted from the continental-continental collision orogeny during the Mesozoic and can be divided into four stages in terms of tectonic evolution: (1) pre-orogenic passive continental margin stage (Z-T2); (2) foreland basin stage corresponding with the late phase of the Sulu (苏鲁) orogeny (J3-K); (3) post-orogenic intracontinental rifted basin stage (K2t-E); and (4) regional subsidence and coverage stage (N-Q). Based on detailed investigation and study of the intracontinental rifted basin, hydrocar- bon source rocks of Late Cretaceous Taizhou (泰州) Formation distributed well in the basin, and four reservoir-cap combinations as well as numerous trap structures were found. As a result, the geological conditions would be excellent for reservoir formation in the basin, and the oil resource amount is estimated at about 20×10^8 t, which makes the basin a major target for hydrocarbon exploration in the South Yellow Sea.展开更多
Al_(2)O_(3)and Ga_(2)O_(3)exhibit numerous crystal phases with distinct stabilities and materialproperties.However,the phase transitions among thosematerialsare typicallyundesirable in industrial applications,making i...Al_(2)O_(3)and Ga_(2)O_(3)exhibit numerous crystal phases with distinct stabilities and materialproperties.However,the phase transitions among thosematerialsare typicallyundesirable in industrial applications,making it imperative to elucidate the transition mechanisms between these phases.The configurational similarities between Al_(2)O_(3)and Ga_(2)O_(3)allow for the replication of phase transition pathways between these materials.In this study,we investigate the potential phase transition pathway of alumina from the 0-phase to the α-phase using stochastic surface walking global optimization based on global neural network potentials,while extending an existing Ga_(2)O_(3)phase transition path.Through this exploration,we identify a novel single-atom migration pseudomartensitic mechanism,which combines martensitic transformation with single-atom diffusion.This discovery offers valuable insights for experimental endeavors aimed at stabilizing alumina in transitional phases.展开更多
This paper systematically investigates and compares the petroleum geology elements and oil and gas exploration potential in the deep-water basins along the conjugate passive margins between Morocco in NW Africa and No...This paper systematically investigates and compares the petroleum geology elements and oil and gas exploration potential in the deep-water basins along the conjugate passive margins between Morocco in NW Africa and Nova Scotia in Canada. Both the deep-water basins along the passive margin in Morocco and its conjugate passive margin deep-water basin in Nova Scotia have undergone similar multiple stages of tectonic evolution. These conjugate basins both have Jurassic and Cretaceous source rocks;Triassic sandstone, Jurassic–Cretaceous carbonate and sandstone, and Miocene–Pliocene sandstone reservoirs;multiple sets of mudstones and regional Triassic salt as caprocks. These characteristics indicate good hydrocarbon accumulation conditions and exploration prospects. The comparison also reveals that the key exploration targets in the deep-water basins of Morocco should be Tertiary turbidite sandstone reservoirs and Jurassic–Cretaceous sandstone and carbonate reservoirs. Compared with the Scotian Basin, the Morocco deep-water basins may have Paleozoic play potential sourced from the mature Silurian hot shale source rock that extends from the onshore NW African Plate. The prospective exploration targets in the deep-water Scotian Basin should be focused on the Jurassic and Cretaceous deep-water turbidite sandstone reservoirs formed by widely-developed large river systems.展开更多
基金supported by National Science and Technology Major Project entitled Test and Application Promotion of Shale Gas Exploration and Evaluation Techniques(No.2016ZX05034)a project organized by the China Geological Survey entitled Shale Gas Geological Survey in Northeastern Yunnan(No.DD20190080).
文摘Dark mudstones and shales of the Carboniferous Jiusi Formation are widely developed in northern Guizhou and Yunnan provinces, SW China. However, the distribution, reservoir characterization, and exploration potential of organic-rich shales in this area are yet to be quantified, thus limiting the prospect of shale gas in this area. This study investigates the basic geological conditions of Jiusi shale gas, using core data, well-logs, and some other test data, obtaining the following results. The organic-rich shales are mainly composed of deltaic-to-shallow-shelf deposits, with thickness ranging from 0 to 450 m, and above 350 m around the subsidence center. The organic matter is mainly type Ⅱ kerogen with TOC content of mostly 1%–2%, indicating a moderate maturity. The argillaceous shale reservoirs are indicative of strong heterogeneity, high clay minerals content, low porosity, low permeability, high specific surface area, and relatively developed secondary porosity. The gas-log anomaly intervals obtained from the survey wells have a cumulative thickness that is apparently greater than 200 m, and a few shale intervals showing high desorbed and adsorbed gas contents. Due to complex structures in the study area, conditions responsible for shale gas occurrence and trapping are generally moderate. However, areas having wide and gentle folds with moderate depth of burial reveals relatively favorable conditions of hydrocarbon traps. In contrast with typical marine-continental transitional shales, the Jiusi shale have better geological conditions for shale gas preservation. The analysis of the geological framework and hydrocarbon potential of Carboniferous Jiusi Formation provide more insight for the exploration of Carboniferous shale gas in southern China.
文摘The Albertine Graben in western Uganda is a Mesozoic-Cenozoic rift basin with petroleum exploration potential. A fundamental evaluation of petroleum potential of the graben is given based on field research, data processing of gravity and magnetism, analysis of graben structure, geochemistry, reservoir and composition research. The basin has a double-layered framework and a large thickness of sediments. Gravity highs shown in a residual anomaly map might indicate central uplift zones. There exist at least two sets of mature or low-maturity source rocks corresponding to a certain source rock in the Cretaceous or Paleogene and Neogene strata. The graben has basement rock with potential reservoirs and Tertiary sandstone reservoirs and thus has petroleum exploration potential.
文摘A series of significant discoveries in marine carbonate rocks show great petroleum exploration potential in the Tarim Basin. However, the oil and gas fields discovered in the carbonate rocks are mainly distributed around the Manjiaer Sag in the eastern Tarim Basin. Some explorations occurred and no oil or gas field was discovered around the Awati Sag in the western Tarim Basin. Information from wells and outcrops reveals that there are excellent oil and gas source rock conditions around the Awati Sag. Transformed reef-shoal reservoirs could be formed in the Ordovician carbonate rocks with paleo-geographic background and hydrothermal conditions. Therefore, it is necessary to make a systematical study and overall evaluation of the potential of the periphery of the Awati Sag in terms of source rock evolution, resource potential, high-grade reservoir formation and distribution, and main factors controlling hydrocarbon migration and accumulation.
文摘Large-scale oil exploration has been done and large quantities of oil-gas fields have been found in the northern shelf basin of the South China Sea for more than 20 years. The tectonic oil-gas pools are the main type. With the exploration to be deepened, looking for atectonic oil-gas pools is listed in China's exploration strategy. There are advantages for the forming of atectonic oil-gas pools in the northern shelf basin of the South China Sea. Because the level of water has been frequently changing within all historical periods, lithozones are changed alternately in both vertical and lateral directions and formed lithologic deposition especially at low water level stages, such as the low-lying fans of basin-floor fans and slope fans. Due to frequent tectonic movement within all historical periods, many structural surfaces and structural unconformities were formed. At the same time, they also formed many kinds of structural unconformity oil-gas pools. According to our exploration and research, the promising areas of atectonic reservoirs within marine basins include: (1) the basin-floor fan of the deep water district, such as the central depression of the Southeast Qiong basin and Baiyun sag in the Zhujiangkou basin; (2) the frontal area of the large ancient delta, such as the Lingao structural belt in the Yingge Sea basin and Huizhou sag in the Zhujiangkou basin; (3) the unconformity pinchout belt or denudation belt in the slope area and the uplift area, for instance, the Yingdong slope belt in the Yingge Sea basin and Yacheng 13-1 structural belt in the southeast Qiong basin. All this proves that the prospects for atectonic oil-gas pools in the northern shelf basin of the South China Sea are very broad.
文摘The Tamtsag Basin is located in the extreme eastern portion of the Mongolia. The Basin and its counterpart in China (the Hailar Basin) are united a whole basin on the structural setting. In recent years, the Tamtsag Basin attracts more and more attention with the important exploration discovered in the 19th block by SOCO and in Hailar Basin of China. This paper discusses the exploration potential of Tamtsag Basin from the viewpoint of petroleum geology.
基金Supported by the National Natural Science Foundation Project of China(U22B6002)Prospective Basic Technology Research Project of PetroChina(2021DJ0605).
文摘Based on outcrop,seismic and drilling data,the main regional unconformities in the Sichuan Basin and their controls on hydrocarbon accumulation were systematically studied.Three findings are obtained.First,six regional stratigraphic unconformities are mainly developed in the Sichuan Basin,from the bottom up which are between pre-Sinian and Sinian,between Sinian and Cambrian,between pre-Permian and Permian,between middle and upper Permian,between middle and upper Triassic,and between Triassic and Jurassic.Especially,16 of 21l conventional(and tight)gas fields discovered are believed to have formed in relation to regional unconformities.Second,regional unconformity mainly controls hydrocarbon accumulation from five aspects:(1)The porosity and permeability of reservoirs under the unconformity are improved through weathering crust karstification to form large-scale karst reservoirs;(2)Good source-reservoir-caprock assemblage can form near the unconformity,which provides a basis for forming large gas field;(3)Regional unconformity may lead to stratigraphic pinch-out and rugged ancient landform,giving rise to a large area of stratigraphic and lithologic trap groups;(4)Regional unconformity provides a dominant channel for lateral migration of oil and gas;and(5)Regional unconformity is conducive to large-scale accumulation of oil and gas.Third,the areas related to regional unconformities are the exploration focus of large gas fields in the Sichuan Basin.The pre-Sinian is found with source rocks,reservoir rocks and other favorable conditions for the formation of large gas fields,and presents a large exploration potential.Thus,it is expected to be an important strategic replacement.
基金supported by the Petro China Major Scientific and Technical Project (No.: 2014B-0608)the National Science and Technology Major Project of China (NO.: 2011ZX5001-001)
文摘This work extensively investigated global tight sandstone gas, and geologically and geochemically analyzed the tight sandstone gas in China's Ordos, Sichuan, and Tarim basins. We compared typical tight sandstone gas in China with that in North America. We proposed six conditions for the formation of China's tight sandstone gas, and illustrated the geological characteristics of tight sandstone gas. In China, gas-bearing tight sandstones were mainly deposited in continental lake deltas and marine-terrigenous facies basin environments, associated with coal-measure strata, and were mostly buried deeper than 2000 in under a formation pressure of 20-30 MPa, with pressure coefficients varying from overpressure to negative pressure. In other countries, tight gas bearing sandstones were dominantly deposited in marine to marine-terrigenous facies environments, occurred in coal-measure strata, and were mostly buried shallower than 2000 m in low-pressure systems. We systematically analyzed tight sandstone gas in the Ordos, Sichuan, and Tarim basins in terms of chemical compositions, geochemical characteristics of carbon isotopes, origins, and sources. Tight sandstone gas in China usually has a hydrocarbon content of 〉95%, with CH4 content 〉90%, and a generally higher dry coefficient. In the three above-mentioned large tight sandstone gas regions,δ13C1 and δJ3C2 mainly ranges from -42%o to -28%o and from -28%o to -21%o, respectively. Type III coal-measure source rocks that closely coexist with tight reservoirs are developed extensively in these gas regions. The organic petrology of source rocks and the carbon isotope compositions of gas indicate that tight sandstone gas in China is dominantly coal-derived gas generated by coal-measure strata. Our analysis of carbon isotope series shows that local isotope reversals are mainly caused by the mixing of gases of different maturities and that were generated at different stages. With increasing maturity, the reversal tendency becomes more apparent. Moreover, natural gas with medium-low maturity (e.g., Xujiahe Formation natural gas in the Sichuan Basin) presents an apparent reversal at a low-maturity stage, a normal series at a medium -maturity stage, and a reversal tendency again at a high-maturity stage. Finally, we proposed four conditions for preferred tight sandstone gas "sweep spots," and illustrated the recoverable reserves, proven reserves, production, and exploration prospects of tight sandstone gas. The geological and geochemical characteristics, origins, sources, and exploration potential of tight sandstone gas in China from our research will be instructive for the future evaluation, prediction, and exploration of tight sandstone gas in China and abroad.
基金This work was supported by the "973" Project (Grant No. G1999054205).
文摘In the traditional views on developmental biology, the process of a mammal from a zygote to. an adult individual follows continuous changes of space and time environments and is the result of different expressions of target genes. It has long been known that this process is irreversible and the terminal differentiated adult cells, such as cardiac myocytes and neurons, will not divide and differentiate. But recent reports on the two hottest fields - cloning medicine and stem cell biology doubted these concepts. This may lead to a further understanding of the potentiality of mammal development and may provide great chances for commercial and clinical practice.
基金This study is finished through the cooperation project between China Geological Survey and Department of Mineral Resources(Thailand)supported by the National Key Project for Basic Research of China(2011CB403007)+2 种基金the National Natural Science Foundation of China(41572067,91855104,41802111)the Geological Survey Project(DD20190437)"Mineral potential exploration and assessment for potash"by the Government of Thailand.
文摘The giant potash deposit on the Khorat Plateau is one of the most promising targets for exploitation of potassium salts.So far,many researches and geologic survey have been conducted on the giant potash deposits.Hence,it is necessary to make an overall review on the potash deposits.The potash deposit on the Khorat Plateau was formed during the Middle to Late Cretaceous,during which seawater was enriched in Ca2+and depleted in SO42-compared with those of modern seawater.In addition to seawater,continental water and hydrothermal fluids could have affected the evaporite basins.The seawater was probably derived from Tethys ocean,and the brine should have evaporated to some extent before entering into the basin systems based on the evidence of absence of carbonates and unproportionate sulphate compared with chloride salts.The paleo-climate during Middle to Late Cretaceous was characterized as high temperature and extremely arid environment,which is favourable for deposition of potassium-magnesium saline minerals.The major saline minerals are of anhydrite,halite,carnallite,sylvite and,tachyhydrite,with trace amounts of borates.The resources of the potash deposit on the Khorat Plateau could be approximately as much as 400×109 t of carnallite and 7×109 t of sylvite.The evaporite sequences have been deformed and altered by postdepositinal processes,including tectonic movements and chemical alteration.Salt domes were formed in the postdepositional processes.Based on the analyses of geophysical surveys and drilling projects,high-quality sylvinite ores are commonly found at the flanks of those salt domes due to incongruent dissolution of carnallite.The furure potential prospecting areas for the highquality sylvinite ores would be on the edges of the Khorat Plateau.
基金co-financed by the National Key Research and Development Plan(No.2016YFC0600104)the Geological Research Project of China+1 种基金the National Gold Group Co.,Ltd.Xintai Gold Mining Co.,Ltd(Yantai,Shandong)(No.XY-DZ2020081)。
文摘As the most important gold producer in China,the Northwest Jiaodong Peninsula is famous for its large gold deposits.In recent years,the discovery of gold mineralization has reached a depth of 4000 m below the surface in this region.It has attracted significant interest from explorers about the prospecting potential at greater depths.Besides,the current deep drilling shows that the prospecting effect in the west portion is better than the region to the east.Does it imply that there is a difference in prospecting potential between the east and the west?This paper seeks to address the issue through fission track thermochronology on apatite and zircon to reveal the temperature-time evolution relationship of rock mass and to inverts their thermal evolution history.In addition,this study analyzes the transformation of ore deposits after mineralization,quantitatively calculates the uplift-erosion rate of rock mass,and summarizes the preservation law of ore deposits.Based on the thermal history simulation of the apatite fission track,our results show that the Guocheng gold belt has experienced three stages of thermal evolution:108-74,74-27,and 27-0 Ma.The uplift and cooling processes of the threestage tectonic uplift events are the results of multi-stage Pacific plate accretion.The calculated total denudation depth of the gold deposit in the Guocheng gold belt from Cretaceous to the present is about 3.4-5.3 km.The metallogenic depth of the ore body in the gold belt is 5.6-8.0 km,which indicates that the ore body in the Guocheng gold belt has suffered a significant degree of denudation.It is speculated that the location with less denudation in the southwest has greater prospecting potential.Our results quantitatively identify the uplift and denudation of the deposit after mineralization,which provides a new theoretical reference for regional mineralization,deep prospecting and exploration.
文摘At the initial stage of subtle reservoir exploration in the shallow to medium formations of the Taibei Sag, Tuha Basin, so far, three kinds of subtle reservoirs (stratigraphic, lithologic and structural-lithologic reservoirs) have been found. Since both the amount and reserve of the discovered subtle reservoirs are small, a great exploration potential remains in the Taibei Sag. The shallow to medium formations in the west of the Taibei Sag were divided into three second-order sequences and ten third-order sequences, of which the rising cyclothems of SQ(J2q) and SQ8 (J2s2) datum level are major exploration targets for the subtle reservoirs (lithologic). The depositional systems of Qiquanhu and Subashi braided river delta were developed there, where the sedimentary sand body is dominated by the regional slopes and slope break belts. There are four main modes the formation of lithologic traps: deltaic front onlap on the slope belt, deltaic front toplap on the slope break belt, lately tilted frontal sand body and sublacustrine fan—slope fan on the slope break belt, of which the first three modes are the major styles of the formation of subtle reservoirs. Major targets for subtle reservoir exploration in the near future include Putaogou Member on the north slope of Huoyanshan, the east slope of Pubei, the nose-like palaeohigh regions of Huobei, Subashi and Lianmuqin, around the Shengbei secondary sag.
基金supported by the National Natural Science Foundation of China (No. 40620140435)
文摘The northern area of the South Yellow Sea, located in the offshore region of China, resulted from the continental-continental collision orogeny during the Mesozoic and can be divided into four stages in terms of tectonic evolution: (1) pre-orogenic passive continental margin stage (Z-T2); (2) foreland basin stage corresponding with the late phase of the Sulu (苏鲁) orogeny (J3-K); (3) post-orogenic intracontinental rifted basin stage (K2t-E); and (4) regional subsidence and coverage stage (N-Q). Based on detailed investigation and study of the intracontinental rifted basin, hydrocar- bon source rocks of Late Cretaceous Taizhou (泰州) Formation distributed well in the basin, and four reservoir-cap combinations as well as numerous trap structures were found. As a result, the geological conditions would be excellent for reservoir formation in the basin, and the oil resource amount is estimated at about 20×10^8 t, which makes the basin a major target for hydrocarbon exploration in the South Yellow Sea.
基金supported by the National Natural Science Foundation of China(No.12188101,No.22122301,No.22033003,No.91745201,No.91945301,No.92145302,and No.92061112)the Fundamental Research Funds for the Central Universities(20720220011)+1 种基金the National Key Research and Devel-opment Program of China(2018YF A0208600)the Tencent Foundation for XPLORER PRIZE.
文摘Al_(2)O_(3)and Ga_(2)O_(3)exhibit numerous crystal phases with distinct stabilities and materialproperties.However,the phase transitions among thosematerialsare typicallyundesirable in industrial applications,making it imperative to elucidate the transition mechanisms between these phases.The configurational similarities between Al_(2)O_(3)and Ga_(2)O_(3)allow for the replication of phase transition pathways between these materials.In this study,we investigate the potential phase transition pathway of alumina from the 0-phase to the α-phase using stochastic surface walking global optimization based on global neural network potentials,while extending an existing Ga_(2)O_(3)phase transition path.Through this exploration,we identify a novel single-atom migration pseudomartensitic mechanism,which combines martensitic transformation with single-atom diffusion.This discovery offers valuable insights for experimental endeavors aimed at stabilizing alumina in transitional phases.
基金the National Science and Technology Major Project Foundation of China(Nos.2017ZX05001-005,2016ZX05029-001)the National Natural Science Foundation of China(No.41728004)。
文摘This paper systematically investigates and compares the petroleum geology elements and oil and gas exploration potential in the deep-water basins along the conjugate passive margins between Morocco in NW Africa and Nova Scotia in Canada. Both the deep-water basins along the passive margin in Morocco and its conjugate passive margin deep-water basin in Nova Scotia have undergone similar multiple stages of tectonic evolution. These conjugate basins both have Jurassic and Cretaceous source rocks;Triassic sandstone, Jurassic–Cretaceous carbonate and sandstone, and Miocene–Pliocene sandstone reservoirs;multiple sets of mudstones and regional Triassic salt as caprocks. These characteristics indicate good hydrocarbon accumulation conditions and exploration prospects. The comparison also reveals that the key exploration targets in the deep-water basins of Morocco should be Tertiary turbidite sandstone reservoirs and Jurassic–Cretaceous sandstone and carbonate reservoirs. Compared with the Scotian Basin, the Morocco deep-water basins may have Paleozoic play potential sourced from the mature Silurian hot shale source rock that extends from the onshore NW African Plate. The prospective exploration targets in the deep-water Scotian Basin should be focused on the Jurassic and Cretaceous deep-water turbidite sandstone reservoirs formed by widely-developed large river systems.