An in-situ TiCp/Al composite was prepared by a thermal explosion/quick pressure method (TE/QP). The effect of Al content on the reaction temperature as well as the reaction rate has been studied. Phase constituents ...An in-situ TiCp/Al composite was prepared by a thermal explosion/quick pressure method (TE/QP). The effect of Al content on the reaction temperature as well as the reaction rate has been studied. Phase constituents and the microstructure of the composites and the particle size of the reinforcement were analysed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results have shown that TiCp/Al composite with 40~70 vol. pct TiC particle reinforcement and high relative density can be directly obtained by TE/QP. TiC is the only reaction product when Al content in Al-Ti-C system is no more than 60 vol. pct, but Al3Ti phase will also form when Al content is more than 60 vol. pct. Increasing Al content prolongs the initial reaction time, reduces the highest reaction temperature and the reaction rate, and decreases the size of TiC particles. In addition, the microstructure of TiCp/Al composite and the structure of interface between TiCp and Al are studied using SEM and transmission electron microscopy (TEM). The results show that the in-situ synthesized TiC particle has fcc cubic structure. The orientation between TiC particles and Al matrix can be described as (220)Al//(022)TiC and [112]Al//[011]TiC. Results of the mechanical property tests reveal that the ultimate strength (σ) and modulus (E) are 687 MPa and 142 GPa respectively when the Al content is 40 vol. pct. On contrary, 6 elongation increases by 3.2% with increasing Al content.展开更多
The fuel-air cloud resulting from an accidental discharge event is normally irregular in shape and varying in concentration. Performance of dispersion simulations using the computational fluid dynamics (CFD)-based t...The fuel-air cloud resulting from an accidental discharge event is normally irregular in shape and varying in concentration. Performance of dispersion simulations using the computational fluid dynamics (CFD)-based tool FLACS can get an uneven and irregular cloud. For the performance of gas explosion study with FLACS, the equivalent stoichiometric fuel-air cloud concept is widely applied to get a representative distribution of explosion loads. The Q9 cloud model that is employed in FLACS is an equivalent fuel-air cloud representation, in which the laminar burning velocity with first order SL and volume expansion ratio are taken into consideration. However, during an explosion in congested areas, the main part of the combustion involves turbulent flame propagation. Hence, to give a more reasonable equivalent fuel-air size, the turbulent burning velocity must be taken into consideration. The paper presents a new equivalent cloud method using the turbulent burning velocity, which is described as a function of SL, deduced from the TNO multi- energy method.展开更多
The time-dependent Jones Wilkins-Lee equation products for aluminized explosives. To obtain the of state (JWL-EOS) is applied to describe detonation state time-dependent JWL-EOS parameters, cylinder tests and underw...The time-dependent Jones Wilkins-Lee equation products for aluminized explosives. To obtain the of state (JWL-EOS) is applied to describe detonation state time-dependent JWL-EOS parameters, cylinder tests and underwater explosion experiments are performed. According to the result of the wall radial velocity in cylinder tests and the shock wave pressures in underwater explosion experiments, the time-dependent JWL-EOS parameters are determined by iterating these variables in AUTODYN hydroeode simulations until the experimental values are reproduced. In addition, to verify the reliability of the derived JWL-EOS parameters, the aluminized explosive experiment is conducted in concrete. The shock wave pressures in the affected concrete bodies are measured by using manganin pressure sensors, and the rod velocity is obtained by using a high-speed camera. Simultaneously, the shock wave pressure and the rod velocity are calculated by using the derived time-dependent JWL equation of state. The calculated results are in good agreement with the experimental data.展开更多
文摘An in-situ TiCp/Al composite was prepared by a thermal explosion/quick pressure method (TE/QP). The effect of Al content on the reaction temperature as well as the reaction rate has been studied. Phase constituents and the microstructure of the composites and the particle size of the reinforcement were analysed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results have shown that TiCp/Al composite with 40~70 vol. pct TiC particle reinforcement and high relative density can be directly obtained by TE/QP. TiC is the only reaction product when Al content in Al-Ti-C system is no more than 60 vol. pct, but Al3Ti phase will also form when Al content is more than 60 vol. pct. Increasing Al content prolongs the initial reaction time, reduces the highest reaction temperature and the reaction rate, and decreases the size of TiC particles. In addition, the microstructure of TiCp/Al composite and the structure of interface between TiCp and Al are studied using SEM and transmission electron microscopy (TEM). The results show that the in-situ synthesized TiC particle has fcc cubic structure. The orientation between TiC particles and Al matrix can be described as (220)Al//(022)TiC and [112]Al//[011]TiC. Results of the mechanical property tests reveal that the ultimate strength (σ) and modulus (E) are 687 MPa and 142 GPa respectively when the Al content is 40 vol. pct. On contrary, 6 elongation increases by 3.2% with increasing Al content.
文摘The fuel-air cloud resulting from an accidental discharge event is normally irregular in shape and varying in concentration. Performance of dispersion simulations using the computational fluid dynamics (CFD)-based tool FLACS can get an uneven and irregular cloud. For the performance of gas explosion study with FLACS, the equivalent stoichiometric fuel-air cloud concept is widely applied to get a representative distribution of explosion loads. The Q9 cloud model that is employed in FLACS is an equivalent fuel-air cloud representation, in which the laminar burning velocity with first order SL and volume expansion ratio are taken into consideration. However, during an explosion in congested areas, the main part of the combustion involves turbulent flame propagation. Hence, to give a more reasonable equivalent fuel-air size, the turbulent burning velocity must be taken into consideration. The paper presents a new equivalent cloud method using the turbulent burning velocity, which is described as a function of SL, deduced from the TNO multi- energy method.
基金Supported by the National Natural Science Foundation of China under Grant No 11172042
文摘The time-dependent Jones Wilkins-Lee equation products for aluminized explosives. To obtain the of state (JWL-EOS) is applied to describe detonation state time-dependent JWL-EOS parameters, cylinder tests and underwater explosion experiments are performed. According to the result of the wall radial velocity in cylinder tests and the shock wave pressures in underwater explosion experiments, the time-dependent JWL-EOS parameters are determined by iterating these variables in AUTODYN hydroeode simulations until the experimental values are reproduced. In addition, to verify the reliability of the derived JWL-EOS parameters, the aluminized explosive experiment is conducted in concrete. The shock wave pressures in the affected concrete bodies are measured by using manganin pressure sensors, and the rod velocity is obtained by using a high-speed camera. Simultaneously, the shock wave pressure and the rod velocity are calculated by using the derived time-dependent JWL equation of state. The calculated results are in good agreement with the experimental data.