By looking at the situation when the coefficients Pj(z)(j=1,2,…,n-1)(or most of them) are exponential polynomials,we investigate the fact that all nontrivial solutions to higher order differential equations f((n))+Pn...By looking at the situation when the coefficients Pj(z)(j=1,2,…,n-1)(or most of them) are exponential polynomials,we investigate the fact that all nontrivial solutions to higher order differential equations f((n))+Pn-1(z)f((n-1))+…+P0(z)f=0 are of infinite order.An exponential polynomial coefficient plays a key role in these results.展开更多
In this paper we develop a novel approach to construct non-stationary subdivision schemes with a tension control parameter which can reproduce functions in a finite-dimensional subspace of exponential polynomials. The...In this paper we develop a novel approach to construct non-stationary subdivision schemes with a tension control parameter which can reproduce functions in a finite-dimensional subspace of exponential polynomials. The construction process is mainly implemented by solving linear systems for primal and dual subdivision schemes respectively, which are based on different parameterizations. We give the theoretical basis for the existence, uniqueness, and refinement rules of schemes proposed in this paper. The convergence and smoothness of the schemes are analyzed as well. Moreover, conics reproducing schemes are analyzed based on our theory, and a new idea that the tensor parameter ωk of the schemes can be adjusted for conics generation is proposed.展开更多
Recently, C.-C. Yang and L Laine have investigated finite order entire solutions f of non- linear differential-difference equations of the form f^n + L(z, f) -= h, where n ≥ 2 is an integer. In particular, it is k...Recently, C.-C. Yang and L Laine have investigated finite order entire solutions f of non- linear differential-difference equations of the form f^n + L(z, f) -= h, where n ≥ 2 is an integer. In particular, it is known that the equation f(z)^2 + q(z)f(z + 1) = p(z), where p(z), q(z) are polynomials, has no transcendental entire solutions of finite order. Assuming that Q(z) is also a polynomial and c E C, equations of the form f(z)^n + q(z)e^Q(Z)f(z + c) = p(z) do posses finite order entire solutions. A classification of these solutions in terms of growth and zero distribution will be given. In particular, it is shown that any exponential polynomial solution must reduce to a rather specific form. This reasoning relies on an earlier paper due to N. Steinmetz.展开更多
Making use of the transformation relation among usual, normal, and antinormal ordering for the multimode boson exponential quadratic polynomial operators (BEQPO's)I we present the analytic expression of arbitrary m...Making use of the transformation relation among usual, normal, and antinormal ordering for the multimode boson exponential quadratic polynomial operators (BEQPO's)I we present the analytic expression of arbitrary matrix elements for BEQPO's. As a preliminary application, we obtain the exact expressions of partition function about the boson quadratic polynomial system, matrix elements in particle-number, coordinate, and momentum representation, and P representation for the BEQPO's.展开更多
This paper is devoted to the problem of stabilizing a Hopfield-type neural network with bi-directional ring architecture and two delays. The delay-independent and delay-dependent stability conditions are explicitly pr...This paper is devoted to the problem of stabilizing a Hopfield-type neural network with bi-directional ring architecture and two delays. The delay-independent and delay-dependent stability conditions are explicitly presented by the method of the characteristic roots and the skill of mathematical analysis. Moreover, if a link between the adjacent two neurons is cut, the ring neural network turns to a linear one, and the stability results are also established. Furthermore, a comparative analysis for the ring and linear network shows that the stability domain is enlarged after the breaking.展开更多
In this paper, the completeness and minimality properties of some random exponential system in a weighted Banach space of complex functions continuous on the real line for convex nonnegative weight are studied. The re...In this paper, the completeness and minimality properties of some random exponential system in a weighted Banach space of complex functions continuous on the real line for convex nonnegative weight are studied. The results may be viewed as a probabilistic version of Malliavin's classical results.展开更多
A polynomially exponential time restrained analytical hierarchy is introduced with the basic proper ties of the hierarchy followed.And it will be shown that there is a recursive set A such that A does not belong to an...A polynomially exponential time restrained analytical hierarchy is introduced with the basic proper ties of the hierarchy followed.And it will be shown that there is a recursive set A such that A does not belong to any level of the p-arithmetical hierarchies.Then we shall prove that there are recursive sets A and B such that the different levels of the analytical hierarchy relative to A are different and for some n every level higher than n of the analytical hierarchy relative to B is the same as the n-th level. And whether the higher levels are collapsed into some lower level is neither provable nor disprovable in set theory and several other results.展开更多
基金supported partly by the National Natural Science Foundation of China(12171050,11871260)National Science Foundation of Guangdong Province(2018A030313508)。
文摘By looking at the situation when the coefficients Pj(z)(j=1,2,…,n-1)(or most of them) are exponential polynomials,we investigate the fact that all nontrivial solutions to higher order differential equations f((n))+Pn-1(z)f((n-1))+…+P0(z)f=0 are of infinite order.An exponential polynomial coefficient plays a key role in these results.
基金Supported by the National Natural Science Foundation of China(No.60873181 and No.u0935004)
文摘In this paper we develop a novel approach to construct non-stationary subdivision schemes with a tension control parameter which can reproduce functions in a finite-dimensional subspace of exponential polynomials. The construction process is mainly implemented by solving linear systems for primal and dual subdivision schemes respectively, which are based on different parameterizations. We give the theoretical basis for the existence, uniqueness, and refinement rules of schemes proposed in this paper. The convergence and smoothness of the schemes are analyzed as well. Moreover, conics reproducing schemes are analyzed based on our theory, and a new idea that the tensor parameter ωk of the schemes can be adjusted for conics generation is proposed.
基金supported by the China Scholarship Council (CSC)supported in part by the Academy of Finland #121281
文摘Recently, C.-C. Yang and L Laine have investigated finite order entire solutions f of non- linear differential-difference equations of the form f^n + L(z, f) -= h, where n ≥ 2 is an integer. In particular, it is known that the equation f(z)^2 + q(z)f(z + 1) = p(z), where p(z), q(z) are polynomials, has no transcendental entire solutions of finite order. Assuming that Q(z) is also a polynomial and c E C, equations of the form f(z)^n + q(z)e^Q(Z)f(z + c) = p(z) do posses finite order entire solutions. A classification of these solutions in terms of growth and zero distribution will be given. In particular, it is shown that any exponential polynomial solution must reduce to a rather specific form. This reasoning relies on an earlier paper due to N. Steinmetz.
基金The authors would like to thank Prof. Y.D. Zhang for selfless helps and valuable discussions.
文摘Making use of the transformation relation among usual, normal, and antinormal ordering for the multimode boson exponential quadratic polynomial operators (BEQPO's)I we present the analytic expression of arbitrary matrix elements for BEQPO's. As a preliminary application, we obtain the exact expressions of partition function about the boson quadratic polynomial system, matrix elements in particle-number, coordinate, and momentum representation, and P representation for the BEQPO's.
文摘This paper is devoted to the problem of stabilizing a Hopfield-type neural network with bi-directional ring architecture and two delays. The delay-independent and delay-dependent stability conditions are explicitly presented by the method of the characteristic roots and the skill of mathematical analysis. Moreover, if a link between the adjacent two neurons is cut, the ring neural network turns to a linear one, and the stability results are also established. Furthermore, a comparative analysis for the ring and linear network shows that the stability domain is enlarged after the breaking.
基金Project supported by the National Natural Science Foundation of China (No.10371005)the Scientific Research Foundation of the Ministry of Education of China for Returned Overseas Chinese Scholars
文摘In this paper, the completeness and minimality properties of some random exponential system in a weighted Banach space of complex functions continuous on the real line for convex nonnegative weight are studied. The results may be viewed as a probabilistic version of Malliavin's classical results.
基金Research supported by the Youth NSF grant JJ890407.
文摘A polynomially exponential time restrained analytical hierarchy is introduced with the basic proper ties of the hierarchy followed.And it will be shown that there is a recursive set A such that A does not belong to any level of the p-arithmetical hierarchies.Then we shall prove that there are recursive sets A and B such that the different levels of the analytical hierarchy relative to A are different and for some n every level higher than n of the analytical hierarchy relative to B is the same as the n-th level. And whether the higher levels are collapsed into some lower level is neither provable nor disprovable in set theory and several other results.