期刊文献+
共找到602篇文章
< 1 2 31 >
每页显示 20 50 100
基于IQPSO-EKF的多传感器融合姿态测量方法研究
1
作者 胡启国 王磊 +1 位作者 马鉴望 任渝荣 《机电工程》 CAS 北大核心 2024年第2期353-363,共11页
为解决自动化竖井掘进设备的定位调姿精度对竖井、孔桩挖掘效率与质量的影响,提出了一种基于改进量子粒子群(IQPSO)-扩展卡尔曼滤波(EKF)的姿态测量算法,以提高微机电系统(MEMS)传感器测量精度。首先,对MEMS传感器数据进行了预处理(除... 为解决自动化竖井掘进设备的定位调姿精度对竖井、孔桩挖掘效率与质量的影响,提出了一种基于改进量子粒子群(IQPSO)-扩展卡尔曼滤波(EKF)的姿态测量算法,以提高微机电系统(MEMS)传感器测量精度。首先,对MEMS传感器数据进行了预处理(除噪、滤波、校准等);然后,参考现有飞行器的坐标系,建立了姿态解算模型,通过姿态角数学模型及运动学分析,构建了EFK状态方程,针对EKF方法参数估计不准确的问题,以分段混沌映射优化初始种群,引入平均位置最优值来避免陷入局部最优的IQPSO-EFK算法,优化EKF的系统、测量噪声的协方差参数;最后,对改进算法和三组姿态误差估计进行了对比实验。研究结果表明:对比三种典型目标函数,IQPSO-EFK相较于普通粒子群算法(QPSO-EFK)具有更强的寻优能力与收敛精度;对比三组旋转速度姿态测量误差,基于IQPSO-EKF算法的姿态测量方法在测量误差时比真实测量误差减少了约86.3%,比扩展卡尔曼滤波减少了约68.7%,比普通粒子群算法减少了约28.2%,证明该算法有效地提高了MEMS传感器测量精度。 展开更多
关键词 竖井掘进 角度测量仪器 姿态测量 微机电系统传感器 多传感器融合 改进量子粒子群-扩展卡尔曼滤波
下载PDF
一种基于Madgwick-EKF融合算法的卫星姿态测量方法
2
作者 史炯锴 张松勇 +1 位作者 渐开旺 高迪驹 《上海航天(中英文)》 CSCD 2024年第2期95-103,120,共10页
针对低地球轨道卫星姿态测量时,传感器易受噪声干扰、陀螺仪漂移等问题,提出一种基于Madgwick扩展卡尔曼滤波合算法(EKF)的卫星姿态测量方法。该方法采用陀螺仪、加速度计、磁强计等多传感器数据进行融合,并结合Madgwick算法和EKF算法... 针对低地球轨道卫星姿态测量时,传感器易受噪声干扰、陀螺仪漂移等问题,提出一种基于Madgwick扩展卡尔曼滤波合算法(EKF)的卫星姿态测量方法。该方法采用陀螺仪、加速度计、磁强计等多传感器数据进行融合,并结合Madgwick算法和EKF算法的优点,实现姿态测量。首先,通过Madgwick算法,利用多个传感器测量数据计算初始姿态。然后,基于初始姿态和实际测量数据,应用EKF算法进行数据融合和噪声滤除,以获得最终准确的姿态估计。实验结果表明:相较Madgwick算法,本算法在测量精度上提升了65.8%,且具有较高的鲁棒性,为低地球轨道卫星姿态测量提供了一种有效的方案。 展开更多
关键词 姿态测量 姿态传感器 Madgwick算法 扩展卡尔曼滤波 近地轨道卫星
下载PDF
基于EKF-GRU的车辆轨迹预测
3
作者 张传莹 徐国艳 +3 位作者 陈志发 周彬 陈立伟 洪玮 《中国安全科学学报》 CAS CSCD 北大核心 2024年第6期164-172,共9页
为提升行车安全,实现自动驾驶车辆正确的决策规划,提出基于扩展卡尔曼滤波(EKF)-门控循环单元(GRU)的车辆轨迹预测方法,结合学习方法与物理模型,在提升预测精度的同时,提高轨迹预测的合理性。首先,基于GRU构建预测网络,通过提取车辆的... 为提升行车安全,实现自动驾驶车辆正确的决策规划,提出基于扩展卡尔曼滤波(EKF)-门控循环单元(GRU)的车辆轨迹预测方法,结合学习方法与物理模型,在提升预测精度的同时,提高轨迹预测的合理性。首先,基于GRU构建预测网络,通过提取车辆的历史轨迹特征预测车辆的纵向加速度及横摆角速度;其次,基于车辆非线性运动学构建EKF状态估计器,结合观测值生成车辆未来有限时域的行驶轨迹;最后,在高速公路多车轨迹数据集NGSIM I-80和US-101上进行轨迹预测方法验证。结果表明:采用传统的物理模型生成预测轨迹,其最终距离误差(FDE)、均方根误差(RMSE)、平均距离误差(ADE)值分别为6.48、7.69和3.03 m。相比之下,利用EKF-GRU生成的预测轨迹表现出更高的准确性,对应的数值分别为5.45、6.67和2.56 m,分别提升15.90%、13.26%和15.51%。 展开更多
关键词 扩展卡尔曼滤波(ekf) 门控循环单元(GRU) 车辆轨迹 轨迹预测 NGSIM数据集 神经网络
下载PDF
Time-varying parameters estimation with adaptive neural network EKF for missile-dual control system
4
作者 YUAN Yuqi ZHOU Di +1 位作者 LI Junlong LOU Chaofei 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期451-462,共12页
In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LST... In this paper, a filtering method is presented to estimate time-varying parameters of a missile dual control system with tail fins and reaction jets as control variables. In this method, the long-short-term memory(LSTM) neural network is nested into the extended Kalman filter(EKF) to modify the Kalman gain such that the filtering performance is improved in the presence of large model uncertainties. To avoid the unstable network output caused by the abrupt changes of system states,an adaptive correction factor is introduced to correct the network output online. In the process of training the network, a multi-gradient descent learning mode is proposed to better fit the internal state of the system, and a rolling training is used to implement an online prediction logic. Based on the Lyapunov second method, we discuss the stability of the system, the result shows that when the training error of neural network is sufficiently small, the system is asymptotically stable. With its application to the estimation of time-varying parameters of a missile dual control system, the LSTM-EKF shows better filtering performance than the EKF and adaptive EKF(AEKF) when there exist large uncertainties in the system model. 展开更多
关键词 long-short-term memory(LSTM)neural network extended Kalman filter(ekf) rolling training time-varying parameters estimation missile dual control system
下载PDF
结合EKF与LSTM神经网络的授时/守时算法
5
作者 徐涛 郭宸宇 赵程 《全球定位系统》 CSCD 2024年第5期126-132,共7页
本文研究了一种在卫星授时下,提高授时信号的授时精度和守时能力方法,即利用晶振计数器,记录下每个秒脉冲时刻的晶振频率信息;将记录历史信息输入到扩展卡尔曼滤波器(extended Kalman filter,EKF)中进行滤波,消除卫星秒脉冲信号的随机误... 本文研究了一种在卫星授时下,提高授时信号的授时精度和守时能力方法,即利用晶振计数器,记录下每个秒脉冲时刻的晶振频率信息;将记录历史信息输入到扩展卡尔曼滤波器(extended Kalman filter,EKF)中进行滤波,消除卫星秒脉冲信号的随机误差,提取北斗卫星前N t_(CN) k fre(k)k v(k)秒秒脉冲的累计时间、时刻的晶振频率、时刻晶振变化速率;并将经过EKF输出的历史数据作为训练集,输入到长短期记忆(long short-term memory,LSTM)神经网络中建立预测模型;通过控制变量法进行算法参数调试,找到最适合的预测模型.试验结果表明:授时算法输出的授时信号精度最大误差为34 ns;授时算法8 h累计误差为1.001μs,平均误差小于0.125μs/h.有效地提高了系统授时和守时精度. 展开更多
关键词 扩展卡尔曼滤波(ekf) 长短期记忆网络(LSTM) 时间同步 卫星授时 晶振建模
下载PDF
基于二阶近似EKF的永磁同步电机无传感器控制策略
6
作者 鲁飞 张可可 +1 位作者 龚淼 李宾皑 《微特电机》 2024年第5期65-69,共5页
在永磁同步电机(PMSM)无感控制中,采用扩展卡尔曼滤波(EKF)来估计PMSM的转子位置和转速,采用一阶Taylor展开对系统状态模型进行线性化,省略二阶及以上项会带来较大的建模误差。针对该问题,提出了基于二阶近似的EKF方法,保留二阶偏微分项... 在永磁同步电机(PMSM)无感控制中,采用扩展卡尔曼滤波(EKF)来估计PMSM的转子位置和转速,采用一阶Taylor展开对系统状态模型进行线性化,省略二阶及以上项会带来较大的建模误差。针对该问题,提出了基于二阶近似的EKF方法,保留二阶偏微分项,提高了系统模型精度。仿真实验证明,该方法可以获得比传统方法更精确的估计结果。 展开更多
关键词 永磁同步电机 参数估计 无传感器控制 二阶扩展卡尔曼滤波
下载PDF
基于EKF融合的室内定位技术研究 被引量:2
7
作者 史明泉 李妮芝 +1 位作者 崔丽珍 秦岭 《传感器与微系统》 CSCD 北大核心 2023年第5期143-146,151,共5页
针对单一室内定位技术的局限性,提出了一种基于扩展卡尔曼滤波(EKF)融合WiFi和行人航位推算(PDR)的定位方法。不同于传统WiFi指纹定位,本文基于随机森林(RF)模型建立多个基分类器,取投票结果的众数作为输出结果;通过采集手机内置传感器... 针对单一室内定位技术的局限性,提出了一种基于扩展卡尔曼滤波(EKF)融合WiFi和行人航位推算(PDR)的定位方法。不同于传统WiFi指纹定位,本文基于随机森林(RF)模型建立多个基分类器,取投票结果的众数作为输出结果;通过采集手机内置传感器数据解算行人的步频、步长,并基于四元数进行航向估计。本文在EKF融合定位时,根据状态模型得到状态的预测值,RF模型输出观测值,根据观测值更新状态估计,推算下一时刻位置。试验表明,本文研究的融合算法的定位精度可达到1.26 m,比单一定位算法定位精度提高了1.07 m。 展开更多
关键词 室内定位 WIFI 随机森林 行人航位推算 扩展卡尔曼滤波
下载PDF
改进强跟踪EKF算法在MEMS姿态解算中的研究
8
作者 陈志旺 姚权允 +2 位作者 吕昌昊 郭金华 彭勇 《高技术通讯》 CAS 2023年第5期467-478,共12页
本文针对四旋翼姿态解算,提出了一种噪声自适应强跟踪扩展卡尔曼滤波算法(ASTEKF)。当机体从平稳状态向机动状态过渡时,由于量测噪声影响会导致算法估计不准确,因此本文首先证明不同时刻新息序列方差满足正交性原理,正交性原理表明,量... 本文针对四旋翼姿态解算,提出了一种噪声自适应强跟踪扩展卡尔曼滤波算法(ASTEKF)。当机体从平稳状态向机动状态过渡时,由于量测噪声影响会导致算法估计不准确,因此本文首先证明不同时刻新息序列方差满足正交性原理,正交性原理表明,量测噪声对观测值的准确性影响很大;其次,引入Sage-Husa噪声自适应估计器较准确估计系统量测噪声均值和方差,使观测值更准确;最后,通过满足正交性原理条件公式计算次优渐消因子,将次优渐消因子引入协方差一步预测运算式中,得到强跟踪滤波器。次优渐消因子的引入使得一步预测协方差矩阵增大,即增大强跟踪扩展卡尔曼滤波器增益,使系统增加对观测值权重,得到更准确的状态估计值。离线仿真实验和在线实物实验结果表明了所设计算法的有效性。 展开更多
关键词 姿态解算 扩展卡尔曼滤波(ekf) 强跟踪滤波器 次优渐消因子 噪声自适应估计器
下载PDF
Unscented extended Kalman filter for target tracking 被引量:21
9
作者 Changyun Liu Penglang Shui Song Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第2期188-192,共5页
A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman... A new method of unscented extended Kalman filter (UEKF) for nonlinear system is presented. This new method is a combination of the unscented transformation and the extended Kalman filter (EKF). The extended Kalman filter is similar to that in a conventional EKF. However, in every running step of the EKF the unscented transformation is running, the deterministic sample is caught by unscented transformation, then posterior mean of non- lineadty is caught by propagating, but the posterior covariance of nonlinearity is caught by linearizing. The accuracy of new method is a little better than that of the unscented Kalman filter (UKF), however, the computational time of the UEKF is much less than that of the UKF. 展开更多
关键词 unscented transformation (UT) extended Kalman filter (ekf unscented extended Kalman filter (Uekf) unscentedKalman filter (UKF) nonliearity.
下载PDF
The Use of High-Performance Fatigue Mechanics and the Extended Kalman/Particle Filters,for Diagnostics and Prognostics of Aircraft Structures 被引量:4
10
作者 Hai-Kun Wang Robert Haynes +2 位作者 Hong-Zhong Huang Leiting Dong Satya N.Atluri 《Computer Modeling in Engineering & Sciences》 SCIE EI 2015年第5期1-24,共24页
In this paper,we propose an approach for diagnostics and prognostics of damaged aircraft structures,by combing high-performance fatigue mechanics with filtering theories.Fast&accurate deterministic analyses of fat... In this paper,we propose an approach for diagnostics and prognostics of damaged aircraft structures,by combing high-performance fatigue mechanics with filtering theories.Fast&accurate deterministic analyses of fatigue crack propagations are carried out,by using the Finite Element Alternating Method(FEAM)for computing SIFs,and by using the newly developed Moving Least Squares(MLS)law for computing fatigue crack growth rates.Such algorithms for simulating fatigue crack propagations are embedded in the computer program Safe-Flaw,which is called upon as a subroutine within the probabilistic framework of filter theories.Both the extended Kalman as well as particle filters are applied in this study,to obtain the statistically optimal and semi-optimal estimates of crack lengths,from a series of noisy measurements of crack-lengths over time.For the specific problem,a simple modification to the particle filter,which can drastically reduce the computational burden,is also proposed.Based on the results of such diagnostic analyses,the prognostics of aerospace structures are thereafter achieved,to estimate the probabilistic distribution of the remaining useful life.By using a simple example of a single-crack near a fastener hole,we demonstrate the concept and effectiveness of the proposed framework.This paper thus forms the scientific foundation for the recently proposed concepts of VRAMS(Virtual Risk-Informed Agile Maneuver Sustainment)and Digital Twins of aerospace vehicles. 展开更多
关键词 DIAGNOSTICS and PROGNOSTICS FATIGUE MECHANICS extended kalmanfilter particle filter
下载PDF
Modified switched IMM estimator based on autoregressive extended Viterbi method for maneuvering target tracking 被引量:3
11
作者 HADAEGH Mahmoudreza KHALOOZADEH Hamid 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第6期1142-1157,共16页
In this paper, a new approach of maneuvering target tracking algorithm based on the autoregressive extended Viterbi(AREV) model is proposed. In contrast to weakness of traditional constant velocity(CV) and constant ac... In this paper, a new approach of maneuvering target tracking algorithm based on the autoregressive extended Viterbi(AREV) model is proposed. In contrast to weakness of traditional constant velocity(CV) and constant acceleration(CA) models to noise effect reduction, the autoregressive(AR) part of the new model which changes the structure of state space equations is proposed. Also using a dynamic form of the state transition matrix leads to improving the rate of convergence and decreasing the noise effects. Since AR will impose the load of overmodeling to the computations, the extended Viterbi(EV) method is incorporated to AR in two cases of EV1 and EV2. According to most probable paths in the interacting multiple model(IMM) during nonmaneuvering and maneuvering parts of estimation, EV1 and EV2 respectively can decrease load of overmodeling computations and improve the AR performance. This new method is coupled with proposed detection schemes for maneuver occurrence and termination as well as for switching initializations. Appropriate design parameter values are derived for the detection schemes of maneuver occurrences and terminations. Finally, simulations demonstrate that the performance of the proposed model is better than the other older linear and also nonlinear algorithms in constant velocity motions and also in various types of maneuvers. 展开更多
关键词 interacting multiple model(IMM) filter constant acceleration(CA) autoregressive(AR) extended Viterbi(EV) autoregressive extended Viterbi(AREV) extended Kalman filter(ekf)
下载PDF
Extended Kalman filtering-based channel estimation for space-time coded MIMO-OFDM systems 被引量:5
12
作者 梁永明 罗汉文 黄建国 《Journal of Shanghai University(English Edition)》 CAS 2007年第5期469-473,共5页
A space-time coded multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) system is considered as a solution to the future wideband wireless communication system. This paper proposes a... A space-time coded multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) system is considered as a solution to the future wideband wireless communication system. This paper proposes an extended Kalman filtering-based (EKF-based) channel estimation method for space-time coded MIMO-OFDM systems. The proposed method can exploit pilot symbols and an extended Kalman filter to estimate channel without any prior knowledge of channel statistics. In comparison with the least square (LS) and the least mean square (LMS) methods, the EKF-based approach has a better performance in theory. Computer simulations demonstrate the proposed method outperforms the LS and LMS methods. Therefore it can offer draznatic system performance improvement at a modest cost of computational complexity. 展开更多
关键词 multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) channel estimation extended Kalman filtering (ekf least mean square (LMS).
下载PDF
Online temperature estimation of Shell coal gasification process based on extended Kalman filter 被引量:2
13
作者 Kangcheng Wang Jie Zhang Dexian Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第7期134-144,共11页
Obtaining the temperature inside the gasifier of a Shell coal gasification process(SCGP)in real-time is very important for safe process operation.However,this temperature cannot be measured directly due to the harsh o... Obtaining the temperature inside the gasifier of a Shell coal gasification process(SCGP)in real-time is very important for safe process operation.However,this temperature cannot be measured directly due to the harsh operating condition.Estimating this temperature using the extended Kalman filter(EKF)based on a simplified mechanistic model is proposed in this paper.The gasifier is partitioned into three zones.The quench pipe and the transfer duct are seen as two additional zones.A simplified mechanistic model is developed in each zone and formulated as a state-space representation.The temperature in each zone is estimated by the EKF in real-time.The proposed method is applied to an industrial SCGP and the effectiveness of the estimated temperatures is verified by a process variable both qualitatively and quan-titatively.The prediction capability of the simplified mechanistic model is validated.The effectiveness of the proposed method is further verified by comparing it to a Kalman filter-based single-zone temperature estimation method. 展开更多
关键词 Shell coalgasificationprocess Mechanistic modeling Temperature estimation extended kalmanfilter
下载PDF
Attitude estimation method based on extended Kalman filter algorithm with 22 dimensional state vector for low-cost agricultural UAV 被引量:1
14
作者 Wu Helong Pei Xinbiao +2 位作者 Li Jihui Gao Huibin Bai Yue 《High Technology Letters》 EI CAS 2020年第2期125-135,共11页
To overcome the shortcomings of traditional artificial spraying pesticides and make more efficient prevention of diseases and pests,a coaxial sixteen-rotor unmanned aerial vehicle(UAV)with pesticide spraying system is... To overcome the shortcomings of traditional artificial spraying pesticides and make more efficient prevention of diseases and pests,a coaxial sixteen-rotor unmanned aerial vehicle(UAV)with pesticide spraying system is designed.The coaxial sixteen-rotor UAV’s basic structure and attitude estimation method are explained.The whole system weights 25 kg,cruising speed can reach 15 m/s,and the flight time is more than 20 min.When the UAV takes large load,the traditional extended Kalman filter(EKF)attitude estimation method can not meet the work requirements under the condition of strong vibration,the attitude measure accuracy is poor and the attitude angle divergence is easily caused.Hence an attitude estimation method based on EKF algorithm with 22 dimensional state vector is proposed which can solve these problems.The UAV system consists of STM32F429 as controller,integrating following measure sensors:accelerometer and gyroscope MPU6000,magnetometer LSM303D,GPS NEO-M8N and barometer.The attitude unit quaternion,velocity,position,earth magnetic field,biases error of gyroscope,accelerometer and magnetometer are introduced as the inertial navigation systems(INS)state vector,while magnetometer,global positioning system(GPS)and barometer are introduced as observation vector,thus making the estimate of the navigation information more accurate.The control strategy of coaxial sixteen-rotor UAV is based on the control method of combining active disturbance rejection control(ADRC)and proportion integral derivative(PID)control.Actual flight data are used to verify the algorithm,and the static experiment shows that the precision of roll angle and pitch angle of the algorithm are±0.1°,the precision of yaw angle is±0.2°.The attitude angle output of MTi sensor is used as reference.The dynamic experiment shows that the accuracy of attitude estimated by EKF algorithm is quite similar to that of MTi’s output,moreover,the algorithm has good real-time performance which meets the need of high maneuverability of agricultural UAV. 展开更多
关键词 coaxial sixteen-rotor unmanned AERIAL vehicle(UAV) extended KALMAN filter(ekf) QUATERNION LOW-COST
下载PDF
室内外混合环境下基于IMM-EKF的AGV连续定位方法研究 被引量:1
15
作者 钱伟 陈析 +3 位作者 任雪林 孙丙宇 罗强 王海宝 《传感器与微系统》 CSCD 北大核心 2023年第7期61-65,共5页
针对室内外混合环境下自动导引车(AGV)连续定位中存在多模型不匹配竞争、定位精度差的问题,提出一种基于交互式多模型—扩展卡尔曼滤波(IMM-EKF)的AGV室内外连续定位算法。针对AGV连续定位存在定位精度差的问题,提出采用平行扩展卡尔曼... 针对室内外混合环境下自动导引车(AGV)连续定位中存在多模型不匹配竞争、定位精度差的问题,提出一种基于交互式多模型—扩展卡尔曼滤波(IMM-EKF)的AGV室内外连续定位算法。针对AGV连续定位存在定位精度差的问题,提出采用平行扩展卡尔曼滤波器分别实现激光雷达(LiDAR)/里程计(ODOM)、全球导航卫星系统(GNSS)/ODOM的融合滤波定位。针对AGV连续定位存在多模型不匹配竞争问题,提出通过模型的似然概率分别计算LiDAR和GNSS模型概率,并根据模型概率对定位结果进行加权融合,从而计算AGV的最优位姿估计。AGV连续定位实验结果表明:本文提出融合LiDAR/GNSS/ODOM的IMM-EKF连续定位滤波算法,极大地提高了室内外连续定位精度、并有效抑制模型间的不匹配竞争关系,实现AGV的实时全局精准定位。 展开更多
关键词 自动导引车 室内外连续定位 交互式多模型 多传感器融合 扩展卡尔曼滤波
下载PDF
基于测量噪声方差自适应的EKF无传感器控制 被引量:1
16
作者 张雨 刘宁 王迎发 《微特电机》 2023年第4期52-56,共5页
提出一种测量噪声方差自适应的扩展卡尔曼滤波(EKF)算法。该算法分别对当前时刻和前一时刻的观测值施加两次EKF算法,将速度与位置观测值的误差百分比的加权和作为测量噪声方差的加权系数,实现测量噪声方差的自适应调整,提高转速和位置... 提出一种测量噪声方差自适应的扩展卡尔曼滤波(EKF)算法。该算法分别对当前时刻和前一时刻的观测值施加两次EKF算法,将速度与位置观测值的误差百分比的加权和作为测量噪声方差的加权系数,实现测量噪声方差的自适应调整,提高转速和位置的观测精度和控制性能。通过实验平台验证了该算法的可行性。 展开更多
关键词 永磁同步电机 无传感器控制 自适应算法 扩展卡尔曼滤波
下载PDF
基于FFRLS+EKF的特定工况下铅炭电池SOC估计 被引量:1
17
作者 王鲁 王峰 +1 位作者 徐利菊 李玮 《电池》 CAS 北大核心 2023年第5期504-508,共5页
提出一种快速、高精度估计铅炭电池荷电状态(SOC)的方法,并在特定工况下进行验证。通过建立等效电路模型,应用MATLAB仿真出SOC曲线,对比遗忘因子递推最小二乘(FFRLS)法+扩展卡尔曼滤波(EKF)估计的SOC与实际SOC曲线的误差,验证算法的精... 提出一种快速、高精度估计铅炭电池荷电状态(SOC)的方法,并在特定工况下进行验证。通过建立等效电路模型,应用MATLAB仿真出SOC曲线,对比遗忘因子递推最小二乘(FFRLS)法+扩展卡尔曼滤波(EKF)估计的SOC与实际SOC曲线的误差,验证算法的精确性和可靠性。在恒流间歇放电特定工况下,使用所提算法估计铅炭电池的SOC,与实际SOC的最大误差不超过0.9%。 展开更多
关键词 铅炭电池 荷电状态(SOC)估计 遗忘因子递推最小二乘(FFRLS)法 扩展卡尔曼滤波(ekf) 特定工况
下载PDF
Maneuvering Target Tracking Algorithm Based on Muti-paramter Sequential Extended Kalman Filter 被引量:2
18
作者 JIA Shuyi SUN Weiwei WANG Guohong 《Journal of Donghua University(English Edition)》 EI CAS 2018年第3期207-214,共8页
Based on the information theory,the performance of maneuvering target tracking can be improved by increasing the input information( observation vector).In this paper,the estimations of radial acceleration and radial v... Based on the information theory,the performance of maneuvering target tracking can be improved by increasing the input information( observation vector).In this paper,the estimations of radial acceleration and radial velocity obtained in the signal processing are introduced into the measurement vector by coordinate transformation.In order to solve the problem of high nonlinearity of the radial acceleration,radial velocity and the state vector,a new algorithm of multi-parameter sequential extended Kalman filter( MSEKF) is proposed.The tracking performance of this algorithm is tested and compared with the other tracking algorithms.It is shown that the proposed algorithm outperforms these algorithms in strong and weak maneuvering environments. 展开更多
关键词 information theory maneuvering target extended Kalman filter(ekf radial acceleration radial velocity
下载PDF
基于EKF算法的动力锂离子电池SOC估计 被引量:3
19
作者 李堂 黄康 +1 位作者 毛行奎 张哲 《电器与能效管理技术》 2023年第9期62-68,75,共8页
为了解决新能源汽车中动力锂离子电池荷电状态(SOC)难以精确估计与预测的问题,首先选用二阶RC等效电路模型对锂离子电池进行建模,运用MATLAB/cftool工具箱和遗忘因子递推最小二乘法(FFRLS)两种方法对锂电池模型参数进行辨识。其次,通过... 为了解决新能源汽车中动力锂离子电池荷电状态(SOC)难以精确估计与预测的问题,首先选用二阶RC等效电路模型对锂离子电池进行建模,运用MATLAB/cftool工具箱和遗忘因子递推最小二乘法(FFRLS)两种方法对锂电池模型参数进行辨识。其次,通过扩展卡尔曼滤波(EKF)算法来提高SOC的估计精度。最后,搭建了电池管理系统(BMS)实验平台,在美国联邦城市驾驶工况(FUDS)下仿真和实验。仿真和实验结果表明FFRLS方法相较于利用cftool工具箱的参数辨识方法能够提高锂离子电池模型精度,且SOC估计精度高、收敛速度快,验证了锂离子电池二阶RC等效电路模型结合EKF算法估计锂离子电池SOC的准确性和有效性。 展开更多
关键词 荷电状态 等效电路模型 遗忘因子递推最小二乘法 扩展卡尔曼滤波
下载PDF
基于改进EKF的激光和视觉SLAM融合算法
20
作者 黄永琦 秦品乐 +3 位作者 曾建潮 柴锐 赵鹏程 温馨 《中北大学学报(自然科学版)》 CAS 2023年第5期536-543,共8页
角点特征在机器人同步定位与建图(Simultaneous Localization and Mapping,SLAM)系统中具有关键性的作用。然而,由于环境差异、机器人运动距离和传感器的影响,导致现有测量方法的角点估计误差较大。本文在原有使用扩展卡尔曼滤波(Extend... 角点特征在机器人同步定位与建图(Simultaneous Localization and Mapping,SLAM)系统中具有关键性的作用。然而,由于环境差异、机器人运动距离和传感器的影响,导致现有测量方法的角点估计误差较大。本文在原有使用扩展卡尔曼滤波(Extended Kalman Filter,EKF)融合激光和视觉SLAM数据的基础上,引入多新息理论,提出了多新息改进EKF融合激光和视觉SLAM数据算法。由于多新息理论能有效利用历史时刻的数据,使系统在原先只使用当前时刻数据的情况下,扩展为能够利用之前多个时刻的有效数据。因此,利用多新息理论改进EKF,可以充分利用之前时刻由角特征和垂线特征融合成的角点结果,从而提升角点估计精度和建图结果。实验结果表明,在室内坏境中,本文方法在迭代次数20次和100次时平均误差分别为0.0268和0.0109,相较于未改进EKF方法,角点估计的精度平均提升了33.9%。 展开更多
关键词 同时定位与建图构建(SLAM) 多传感器融合 多新息理论 扩展卡尔曼滤波
下载PDF
上一页 1 2 31 下一页 到第
使用帮助 返回顶部