An extended interaction oscillator (EIO) generating 120 GHz wave in sub-terahertz waves is studied by using the three-dimensional electromagnetic simulation software CST and PIC codes. A rectangular reentrant couple...An extended interaction oscillator (EIO) generating 120 GHz wave in sub-terahertz waves is studied by using the three-dimensional electromagnetic simulation software CST and PIC codes. A rectangular reentrant coupled-cavity is proposed as the slow-wave structure of EIO. By CST, the circuit parameters including frequency-phase dispersion, interaction impedance and characteristic impedance are simulated and calculated. The operation mode of EIO is chosen very close to the point where βL = 2π with corresponding frequency 120 GHz, the beam voltage 12 kV and the dimensions of the cavity with the period 0.5mm, the height 3mm and the width 1.4mm. Simulation results of beam-wave interaction by PIC show that the exciting frequency is 120.85 GHz and output peak power 465 W with 12-period coupled-cavity with the perveance 0.17 μP. Simulation results indicate that the EIO has very wide range of the operation voltage.展开更多
A terahertz dual-mode extended interaction oscillator (EIO) driven by a pseudospark-sourced sheet electron beam (SEB) was presented.The major advantages of the newly developed circuit include 1) high-density SEB inter...A terahertz dual-mode extended interaction oscillator (EIO) driven by a pseudospark-sourced sheet electron beam (SEB) was presented.The major advantages of the newly developed circuit include 1) high-density SEB interacting with the TM_(11) and TM_(31) modes,respectively,and 2) high output power of over 1 kW at the subterahertz frequency range.Two different types of 2π modes and their output characteristics were studied,and the circuit was optimized to ensure efficient outputs of two standing-wave modes.The three-dimensional (3D) particle-in-cell (PIC) simulation predicts the maximum output power of 1.3 kW with the 3-dB bandwidth of ~0.5 GHz at 303 GHz when operating at the TM_(11)mode,and 3.18 kW with the 3-dB bandwidth of ~0.85 GHz at 364 GHz when operating at the TM_(31)mode.展开更多
基金supported by the National Natural Science Foundation of China (Grant No 10676110)the National Basic Research Program of China (Grant No 2007CB310401)
文摘An extended interaction oscillator (EIO) generating 120 GHz wave in sub-terahertz waves is studied by using the three-dimensional electromagnetic simulation software CST and PIC codes. A rectangular reentrant coupled-cavity is proposed as the slow-wave structure of EIO. By CST, the circuit parameters including frequency-phase dispersion, interaction impedance and characteristic impedance are simulated and calculated. The operation mode of EIO is chosen very close to the point where βL = 2π with corresponding frequency 120 GHz, the beam voltage 12 kV and the dimensions of the cavity with the period 0.5mm, the height 3mm and the width 1.4mm. Simulation results of beam-wave interaction by PIC show that the exciting frequency is 120.85 GHz and output peak power 465 W with 12-period coupled-cavity with the perveance 0.17 μP. Simulation results indicate that the EIO has very wide range of the operation voltage.
基金the National Natural Science Foundation of China under Grant No.61771096the Fundamental Research Funds for the Central Universities under Grant No.ZYGX2016J059+1 种基金the National Basic Research Program of China under Grant No.2013CB933603the UK Engineering and Physical Sciences Research Council(EPSRC)under Grant No.EP/S00968X/1。
文摘A terahertz dual-mode extended interaction oscillator (EIO) driven by a pseudospark-sourced sheet electron beam (SEB) was presented.The major advantages of the newly developed circuit include 1) high-density SEB interacting with the TM_(11) and TM_(31) modes,respectively,and 2) high output power of over 1 kW at the subterahertz frequency range.Two different types of 2π modes and their output characteristics were studied,and the circuit was optimized to ensure efficient outputs of two standing-wave modes.The three-dimensional (3D) particle-in-cell (PIC) simulation predicts the maximum output power of 1.3 kW with the 3-dB bandwidth of ~0.5 GHz at 303 GHz when operating at the TM_(11)mode,and 3.18 kW with the 3-dB bandwidth of ~0.85 GHz at 364 GHz when operating at the TM_(31)mode.