期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
The internal circulations on internal mass transfer rate of a single drop in nonlinear uniaxial extensional flow
1
作者 Anjun Liu Jie Chen +3 位作者 Meng Guo Chengmin Chen Meihong Yang Chao Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第7期51-60,共10页
The internal flow of a droplet in the nonlinear extensional flow field will exhibit more than two internal circulations with the variation of nonlinear intensity(E).In this paper,the effect of positions and sizes of i... The internal flow of a droplet in the nonlinear extensional flow field will exhibit more than two internal circulations with the variation of nonlinear intensity(E).In this paper,the effect of positions and sizes of internal circulations on internal mass transfer rate of a single spherical droplet in a nonlinear extensional flow field is studied and compared with that in a linear extensional flow field.The simulation results show that when E≥0,there are two symmetrical internal circulations in the droplet,which is the same with that in a linear extensional flow.The limit value of mass transfer rate Sh is 15,which is equal to that in a linear extensional flow,no matter how large E is.When E≤-3/7,the number of internal flow circulation of a droplet increase to four and the transfer rate Sh increases.When E=-1,the maximum internal transfer rate Sh equals 30 which is twice of that in a linear extensional flow.The generation of new flow circulations in droplets and the circulation positions will enhance mass transfer when E≤-3/7,which provides a new idea for enhancing the internal mass transfer rate of droplets. 展开更多
关键词 Internal mass transfer Nonlinear extensional flow field Spherical droplet Internal circulations
下载PDF
Temperature Effect on the Conformation Transition of Ultra-high Molecular Weight Polyethylene/Polypropylene Blends Undergoing Continuous Volume Extensional Flow:A Mesoscopic Simulation
2
作者 WANG Junxia YAN Shilin YU Dingshan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第3期540-545,共6页
Due to the multiformity and complexity of chain conformation under external flow and the challenge of systematically investigating the transient conformation and dynamic evolution process of polymer chains at the mole... Due to the multiformity and complexity of chain conformation under external flow and the challenge of systematically investigating the transient conformation and dynamic evolution process of polymer chains at the molecular level by means of present experimental techniques,a universal description of both chain conformation and dynamics with respect to continuous volume extensional flow(CVEF)is still absent.Taking into account the temperature effect,we performed dissipative particle dynamics(DPD)simulations with the particles corresponding to the repeat units of polymers over a wide temperature range and analyzed the correlation with the conformational properties of ultra-high molecular weight polyethylene/polypropylene(UHMWPE/PP)blend in response to the CVEF.With time evolution,the polymer chains become highly oriented parallel to the flow direction instead of the initial random coiling and self-aggregation.It is found that a high temperature is necessary for more substantial compactness to take place than low temperature.The low-k plateau and low-k peak in structure factor S(k)curves suggest a low degree of conformational diversity and a high degree of chain stretching.It is also concluded that the intra-molecular C-C bond interaction is the main driving force for the dynamics process of the chain conformations undergoing CVEF,where the motion of the alkyl chains is seriously restricted owing to the increase in bond interaction potential,resulting in a reduction of the difference in diffusion rates among alkyl chains. 展开更多
关键词 temperature effect dissipative particle dynamics ultra-high molecular weight polyethylene POLYPROPYLENE volume extensional flow chain conformation BLENDS
下载PDF
Asymmetric breakup of a droplet in an axisymmetric extensional flow
3
作者 Dongming Yu Manman Zheng +1 位作者 Taoming Jin Jingtao Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第1期63-70,共8页
The asymmetric breakups of a droplet in an axisymmetric cross-like microfluidic device are investigated by using a three-dimensional volume of fluid(VOF) multiphase numerical model. Two kinds of asymmetries(droplet lo... The asymmetric breakups of a droplet in an axisymmetric cross-like microfluidic device are investigated by using a three-dimensional volume of fluid(VOF) multiphase numerical model. Two kinds of asymmetries(droplet location deviation from the symmetric geometry center and different flow rates at two symmetric outlets) generate asymmetric flow fields near the droplet, which results in the asymmetric breakup of the latter. Four typical breakup regimes(no breakup, one-side breakup, retraction breakup and direct breakup) have been observed.Two regime maps are plotted to describe the transition from one regime to another for the two types of different asymmetries, respectively. A power law model, which is based on the three critical factors(the capillary number,the asymmetry of flow fields and the initial volume ratio), is employed to predict the volume ratio of the two unequal daughter droplets generated in the direct breakup. The influences of capillary numbers and the asymmetries have been studied systematically in this paper. The larger the asymmetry is, the bigger the oneside breakup zone is. The larger the capillary number is, the more possible the breakup is in the direct breakup zone. When the radius of the initial droplet is 20 μm, the critical capillary numbers are 0.122, 0.128, 0.145,0.165, 0.192 and 0.226 for flow asymmetry factor AS= 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5, respectively, in the flow system whose asymmetry is generated by location deviations. In the flow system whose asymmetry is generated by two different flow rates at two outlets, the critical capillary numbers are 0.121, 0.133, 0.145, 0.156 and 0.167 for AS= 1/21, 3/23, 1/5, 7/27 and 9/29, respectively. 展开更多
关键词 Asymmetric breakup Droplet Volume of fluid method Axisymmetric extensional flow
下载PDF
External mass transfer from/to a single sphere in a nonlinear uniaxial extensional creeping flow
4
作者 Anjun Liu Jie Chen +6 位作者 Moshe Favelukis Meng Guo Meihong Yang Chao Yang Tao Zhang Min Wang Hao-yue Quan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第1期230-245,共16页
This work systematically simulates the external mass transfer from/to a spherical drop and solid particle suspended in a nonlinear uniaxial extensional creeping flow.The mass transfer problem is governed by three dime... This work systematically simulates the external mass transfer from/to a spherical drop and solid particle suspended in a nonlinear uniaxial extensional creeping flow.The mass transfer problem is governed by three dimensionless parameters:the viscosity ratio(λ),the Peclet number(Pe),and the nonlinear intensity of the flow(E).The existing mass transfer theory,valid for very large Peclet numbers only,is expanded,by numerical simulations,to include a much larger range of Peclet numbers(1≤Pe≤105).The simulation results show that the dimensionless mass transfer rate,expressed as the Sherwood number(5 h),agrees well with the theoretical results at the convection-dominated regime(Pe>103).Only when E>5/4,the simulated Sh for a solid sphere in the nonlinear uniaxial extensional flow is larger than theoretical results because the theory neglects the effect of the vortex formed outside the particle on the rate of mass transfer.Empirical correlations are proposed to predict the influence of the dimensionless governing parameters(λ,Pe,E)on the Sherwood number(Sh).The maximum deviations of all empirical correlations are less than 15%when compared to the numerical simulated results. 展开更多
关键词 External mass transfer Nonlinear extensional flow SPHERE Empirical correlation
下载PDF
EXTENSIONAL FLOW OF BULK POLYMERS STUDIED BY DYNAMIC MONTE CARLO SIMULATIONS
5
作者 Yu Ma Xiao-hong Zhang 胡文兵 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2013年第11期1463-1469,共7页
Dynamic Monte Carlo simulations of bulk lattice polymers driven through planar geometries with sequentially converging, parallel and diverging spaces between two neutrally repulsive solid plates are reported. The spat... Dynamic Monte Carlo simulations of bulk lattice polymers driven through planar geometries with sequentially converging, parallel and diverging spaces between two neutrally repulsive solid plates are reported. The spatial profiles of polymer velocity and deformation along the course of such a laminar extensional flow have been carefully analyzed. The results appear consistent with experimental observations in literature. In the entrance and exit regions, a linear dependence of chain extension upon the excess velocity has been observed. Moreover, an annexed shear flow and a molecular-dispersion effect are found. The results demonstrate a useful strategy of this approach to study polymer flows and bring new insights into the non-Newtonian-fluid behaviors of bulk polymers in capillary rheometers and micro-fluidic devices. 展开更多
关键词 Polymer deformation extensional flow Monte Carlo simulations.
原文传递
CONSTITUTIVE EQUATION OF CO-ROTATIONAL DERIVATIVE TYPE FOR ANISOTROPIC-VISCOELASTIC FLUID 被引量:7
6
作者 韩式方 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2004年第1期46-53,共8页
A constitutive equation theory of Oldroyd fluid B type,i.e.the co-rotational derivative type,is developed for the anisotropic-viscoelastic fluid of liquid crystalline(LC)polymer.Analyzing the influence of the orientat... A constitutive equation theory of Oldroyd fluid B type,i.e.the co-rotational derivative type,is developed for the anisotropic-viscoelastic fluid of liquid crystalline(LC)polymer.Analyzing the influence of the orientational motion on the material behavior and neglecting the influence,the constitutive equation is applied to a simple case for the hydrodynamic motion when the orientational contribution is neglected in it and the anisotropic relaxation,retardation times and anisotropic viscosi- ties are introduced to describe the macroscopic behavior of the anisotropic LC polymer fluid.Using the equation for the shear flow of LC polymer fluid,the analytical expressions of the apparent viscosity and the normal stress differences are given which are in a good agreement with the experimental results of Baek et al.For the fiber spinning flow of the fluid,the analytical expression of the extensional viscosity is given. 展开更多
关键词 constitutive equation anisotropic-viscoelastic fluid liquid crystalline polymer nonNewtonian flow co-rotational derivative anisotropic material functions shear flow extensional flow
下载PDF
An unsymmetric constitutive equation for anisotropic viscoelastic fluid 被引量:2
7
作者 Shifang Han 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第2期149-158,共10页
A continuum constitutive theory of corotational derivative type is developed for the anisotropic viscoelastic fluid-liquid crystalline (LC) polymers. A concept of anisotropic viscoelastic simple fluid is introduced.... A continuum constitutive theory of corotational derivative type is developed for the anisotropic viscoelastic fluid-liquid crystalline (LC) polymers. A concept of anisotropic viscoelastic simple fluid is introduced. The stress tensor instead of the velocity gradient tensor D in the classic Leslie-Ericksen theory is described by the first Rivlin-Ericksen tensor A and a spin tensor W measured with respect to a co-rotational coordinate system. A model LCP-H on this theory is proposed and the characteristic unsymmetric behaviour of the shear stress is predicted for LC polymer liquids. Two shear stresses thereby in shear flow of LC polymer liquids lead to internal vortex flow and rotational flow. The conclusion could be of theoretical meaning for the modern liquid crystalline display technology. By using the equation, extrusion-extensional flows of the fluid are studied for fiber spinning of LC polymer melts, the elongational viscosity vs. extension rate with variation of shear rate is given in figures. A considerable increase of elongational viscosity and bifurcation behaviour are observed when the orientational motion of the director vector is considered. The contraction of extru- date of LC polymer melts is caused by the high elongational viscosity. For anisotropic viscoelastic fluids, an important advance has been made in the investigation on the constitutive equation on the basis of which a seriesof new anisotropic non-Newtonian fluid problems can be addressed. 展开更多
关键词 Unsymmetric constitutive equation .Co-rotational derivative type.Anisotropic simple fluid . Liquid crystalline polymer .Extrusion- extensional flow
下载PDF
Transport phenomena for a spherical particle in pure extensional and simple shear flows
8
作者 ZHANG JingSheng CHEN Jie +1 位作者 YANG Chao MAO ZaiSha 《Science Foundation in China》 CAS 2013年第1期73-93,共21页
Particles(including solid particles,liquid drops and gas bubbles)are ubiquitous in a large number of natural processes as well as in industrial productions.Their behaviors are of fundamental importance in multiphase s... Particles(including solid particles,liquid drops and gas bubbles)are ubiquitous in a large number of natural processes as well as in industrial productions.Their behaviors are of fundamental importance in multiphase systems since the existence of such dispersed particles influences the momentum,mass and heat transport behaviors in these systems.Up to now,a vast body of literature has been published in dealing with the transport phenomena related to a particle surrounded by a fluid under various physical circumstances.In this paper,principal research results for the transport process of a single spherical particle in pure extensional and simple shear flows presented in the literature,including our recent work,are generally reviewed in order to give a comprehensive knowledge in this area. 展开更多
关键词 PARTICLE Pure extensional flow Simpleshear flow Mass transfer Heat transfer
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部