BACKGROUND Sorafenib is the first-line treatment for patients with advanced hepatocellular carcinoma(HCC).Y-box binding protein 1(YB-1)is closely correlated with tumors and drug resistance.However,the relationship bet...BACKGROUND Sorafenib is the first-line treatment for patients with advanced hepatocellular carcinoma(HCC).Y-box binding protein 1(YB-1)is closely correlated with tumors and drug resistance.However,the relationship between YB-1 and sorafenib resistance and the underlying mechanism in HCC remain unknown.AIM To explore the role and related mechanisms of YB-1 in mediating sorafenib resistance in HCC.METHODS The protein expression levels of YB-1 were assessed in human HCC tissues and adjacent nontumor tissues.Next,we constructed YB-1 overexpression and knockdown hepatocarcinoma cell lines with lentiviruses and stimulated these cell lines with different concentrations of sorafenib.Then,we detected the proliferation and apoptosis in these cells by terminal deoxynucleotidyl transferase dUTP nick end labeling,flow cytometry and Western blotting assays.We also constructed a xenograft tumor model to explore the effect of YB-1 on the efficacy of sorafenib in vivo.Moreover,we studied and verified the specific molecular mechanism of YB-1 mediating sorafenib resistance in hepatoma cells by digital gene expression sequencing(DGE-seq).RESULTS YB-1 protein levels were found to be higher in HCC tissues than in corresponding nontumor tissues.YB-1 suppressed the effect of sorafenib on cell proliferation and apoptosis.Consistently,the efficacy of sorafenib in vivo was enhanced after YB-1 was knocked down.Furthermore,KEGG pathway enrichment analysis of DGEseq demonstrated that the phosphoinositide-3-kinase(PI3K)/protein kinase B(Akt)signaling pathway was essential for the sorafenib resistance induced by YB-1.Subsequently,YB-1 interacted with two key proteins of the PI3K/Akt signaling pathway(Akt1 and PIK3R1)as shown by searching the BioGRID and HitPredict websites.Finally,YB-1 suppressed the inactivation of the PI3K/Akt signaling pathway induced by sorafenib,and the blockade of the PI3K/Akt signaling pathway by LY294002 mitigated YB-1-induced sorafenib resistance.CONCLUSION Overall,we concluded that YB-1 augments sorafenib resistance through the PI3K/Akt signaling pathway in HCC and suggest that YB-1 is a key drug resistance-related gene,which is of great significance for the application of sorafenib in advanced-stage HCC.展开更多
Objectives: The aim of this study was to assess the levels of Y-box binding protein 1 (YBX-1) and interleukin 6 (IL-6) in the sera of metastatic and non-metastatic breast cancer patients (BC), investigate their clinic...Objectives: The aim of this study was to assess the levels of Y-box binding protein 1 (YBX-1) and interleukin 6 (IL-6) in the sera of metastatic and non-metastatic breast cancer patients (BC), investigate their clinicopathological significance and to analyze their potential use as biomarkers of breast cancer metastasis. Methods: The study included ninety subjects sub-grouped equally into metastatic BC, non-metastatic BC and healthy volunteers. Serum YBX-1 and IL-6 were quantified using ELISA technique while CA 15-3 was quantified using IRMA kit. Clinical data were collected from patients’ records. Results: YBX-1 (p < 0.001), IL-6 (p < 0.001) and CA15-3 (p = 0.017, 0.001) were significantly elevated in metastatic and non-metastatic BC patients compared to healthy controls, however, only YBX-1 (p 0.001) showed a significant difference with cancer metastasis. Generally, YBX-1 and IL-6 were correlated with worse histological grade and late clinical stage in breast cancer patients and they were also associated with axillary lymph nodes involvement and positive vascular invasion in metastatic BC patients. Serum YBX-1 and IL-6 levels were positively correlated to each other (rs = 0.615, p < 0.001) and they showed high sensitivity and specificity compared to CA 15-3 (p < 0.001 and p = 0.004 for YBX-1 and IL-6 respectively) for predicting cancer metastasis. Conclusions: Serum YBX-1 and IL-6 are potential biomarkers of breast cancer patients with significant correlation with bad clinicopathological characteristics. Serum YBX-1 and IL-6 have superior sensitivity and specificity compared to CA15-3 and can serve as potential follow up and prognostic markers.展开更多
BACKGROUND: We previously showed that insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) is a novel mediator in liver fibrosis. Transforming growth factor beta 1 (TGF beta 1) is known as the stron...BACKGROUND: We previously showed that insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) is a novel mediator in liver fibrosis. Transforming growth factor beta 1 (TGF beta 1) is known as the strongest effector of liver fibrosis. Therefore, we aimed to investigate the detailed interaction between IGFBPrP1 and TGF beta 1 in primary hepatic stellate cells (HSCs). METHODS: We overexpressed TGF beta 1 or IGFBPrP1 and inhibited TGF beta 1 expression in primary HSCs for 6, 12, 24, 48, 72, and 96 hours to investigate their interaction and observe the accompanying expressions of a-smooth muscle actin (alpha-SMA), collagen I, fibronectin, and phosphorylated-mothers against decapentaplegic homolog 2/3 (p-Smad2/3). RESULTS: We found that the adenovirus vector encoding the TGF beta 1 gene (AdTGF beta 1) induced IGFBPrP1 expression while that of alpha-SMA, collagen I, fibronectin, and TGF beta 1 increased gradually. Concomitantly, AdIGFBPrP1 upregulated TGF beta 1, alpha-SMA, collagen I, fibronectin, and p-Smad2/3 in a time-dependent manner while IGFBPrP1 expression was decreased at 96 hours. Inhibition of TGF beta 1 expression reduced the IGFBPrP1-stimulated expression of alpha-SMA, collagen I, fibronectin, and p-Smad2/3. CONCLUSIONS: These findings for the first time suggest the existence of a possible mutually regulation between IGFBPrP1 and TGF beta 1, which likely accelerates liver fibrosis progression. Furthermore, IGFBPrP1 likely participates in liver fibrosis in a TGF beta 1-depedent manner, and may act as an upstream regulatory factor of TGF beta 1 in the Smad pathway.展开更多
目的研究miR-483/CREB1轴在桃叶珊瑚苷(aucubin,AU)抑制人退行性髓核(nucleus pulposus,NP)细胞胞外基质(extracellular matrix,ECM)降解中的功能作用。方法AU处理人退行性NP细胞后,检测细胞活性、ECM相关蛋白及cAMP反应元件结合蛋白1(c...目的研究miR-483/CREB1轴在桃叶珊瑚苷(aucubin,AU)抑制人退行性髓核(nucleus pulposus,NP)细胞胞外基质(extracellular matrix,ECM)降解中的功能作用。方法AU处理人退行性NP细胞后,检测细胞活性、ECM相关蛋白及cAMP反应元件结合蛋白1(c AMP responsive element binding protein 1,CREB1)的表达。实时荧光定量PCR(quantitative real-time PCR,q PCR)和Western blot检测miR-483表达变化对CREB1丰度的影响;双荧光素酶报告实验(luciferase,LUC)检测miR-483和CREB1-3’-UTR的靶向结合;CREB1过表达载体和(或)miR-483 mimics共转染后,AU处理,检测CREB1及ECM相关蛋白的表达。结果AU可显著增强NP细胞活性(P=0.0004),抑制ECM降解酶基质金属蛋白酶-3(matrix metalloproteinase-3,MMP-3)、血小板反应蛋白解整合素金属肽酶-5(a disintegrin and metalloproteinase domain with thrombospondin motif-5,ADAMTS-5)与CREB1的表达,促进胶原蛋白Ⅱ型胶原α1(collagen type II alpha 1 chain,COL2A1)和miR-483的表达(P<0.001)。miR-483过表达可抑制CREB1的表达(P<0.0001),LUC实验表明miR-483可与CREB1-3’-UTR靶向结合。功能实验结果表明CREB1可削弱AU对NP细胞ECM的降解的抑制作用,而miR-483可部分逆转CREB1对AU的抑制作用。结论AU诱导NP细胞表达miR-483,进而抑制CREB1的表达,增强NP细胞的活性,抑制ECM的降解。展开更多
Background Insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) can activate hepatic stellate cells and increase extracellular matrix (ECM) in vitro. However, the effects of IGFBPrP1 in mice wit...Background Insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) can activate hepatic stellate cells and increase extracellular matrix (ECM) in vitro. However, the effects of IGFBPrP1 in mice with hepatic fibrosis, and the mechanisms of these effects, are currently unknown. We aim to address these issues in this study. Methods Intraperitoneal injection of thioacetamide (TAA) is a classic method for establishing a mouse model of hepatic fibrosis. Using this model, we administered anti-IGFBPrP1 antibody, again via intraperitoneal injection. The morphological changes of liver fibrosis were observed with both HE and Masson stainning. The immunohistochemical assays and Western blotting were used to measure changes in IGFBPrP1, a-smooth muscle actin (a-SMA) and ECM in liver tissues, and the expression of transforming growth factor-β1 (TGF-β1) and Smad3. Data were statistically analyzed using one-way analysis of variance (ANOVA), the SNK-q test for inter-group differences. Results The Masson staining analysis showed that compared with normal control group, content of collagen fiber in TAA5w group was significantly increased (P 〈0.01), and it was significantly decreased in TAA5w/alGFBPrP1 group compared with in TAA5w group (P 〈0.01). The expression of hepatic IGFBPrP1, a-SMA, TGF-β1, Smad3, collagen 1 and fibronectin (FN) was significantly up-regulated in the TAA5w group (P 〈0.01). Anti-IGFBPrP1 treatment reversed these changes (P 〈0.01). Conclusions IGFBPrP1 plays an important role in the development of hepatic fibrosis. Anti-IGFBPrP1 prevents fibrosis in mice by suppressing the activation of hepatic stellate cells, inhibiting the synthesis of major components of the ECM (namely, collagen I and FN). The mechanism for this suppression of fibrosis is associated with the TGF-β1/Smad3 signaling pathways.展开更多
基金Supported by National Natural Science Foundation of China,No.81770601,No.81702324,and No.81602529Natural Science Foundation of Hebei Province,No.H2018206176 and No.H2017206141Post-graduate’s Innovation Fund Project of Hebei Province,No.CXZZBS2019121.
文摘BACKGROUND Sorafenib is the first-line treatment for patients with advanced hepatocellular carcinoma(HCC).Y-box binding protein 1(YB-1)is closely correlated with tumors and drug resistance.However,the relationship between YB-1 and sorafenib resistance and the underlying mechanism in HCC remain unknown.AIM To explore the role and related mechanisms of YB-1 in mediating sorafenib resistance in HCC.METHODS The protein expression levels of YB-1 were assessed in human HCC tissues and adjacent nontumor tissues.Next,we constructed YB-1 overexpression and knockdown hepatocarcinoma cell lines with lentiviruses and stimulated these cell lines with different concentrations of sorafenib.Then,we detected the proliferation and apoptosis in these cells by terminal deoxynucleotidyl transferase dUTP nick end labeling,flow cytometry and Western blotting assays.We also constructed a xenograft tumor model to explore the effect of YB-1 on the efficacy of sorafenib in vivo.Moreover,we studied and verified the specific molecular mechanism of YB-1 mediating sorafenib resistance in hepatoma cells by digital gene expression sequencing(DGE-seq).RESULTS YB-1 protein levels were found to be higher in HCC tissues than in corresponding nontumor tissues.YB-1 suppressed the effect of sorafenib on cell proliferation and apoptosis.Consistently,the efficacy of sorafenib in vivo was enhanced after YB-1 was knocked down.Furthermore,KEGG pathway enrichment analysis of DGEseq demonstrated that the phosphoinositide-3-kinase(PI3K)/protein kinase B(Akt)signaling pathway was essential for the sorafenib resistance induced by YB-1.Subsequently,YB-1 interacted with two key proteins of the PI3K/Akt signaling pathway(Akt1 and PIK3R1)as shown by searching the BioGRID and HitPredict websites.Finally,YB-1 suppressed the inactivation of the PI3K/Akt signaling pathway induced by sorafenib,and the blockade of the PI3K/Akt signaling pathway by LY294002 mitigated YB-1-induced sorafenib resistance.CONCLUSION Overall,we concluded that YB-1 augments sorafenib resistance through the PI3K/Akt signaling pathway in HCC and suggest that YB-1 is a key drug resistance-related gene,which is of great significance for the application of sorafenib in advanced-stage HCC.
文摘Objectives: The aim of this study was to assess the levels of Y-box binding protein 1 (YBX-1) and interleukin 6 (IL-6) in the sera of metastatic and non-metastatic breast cancer patients (BC), investigate their clinicopathological significance and to analyze their potential use as biomarkers of breast cancer metastasis. Methods: The study included ninety subjects sub-grouped equally into metastatic BC, non-metastatic BC and healthy volunteers. Serum YBX-1 and IL-6 were quantified using ELISA technique while CA 15-3 was quantified using IRMA kit. Clinical data were collected from patients’ records. Results: YBX-1 (p < 0.001), IL-6 (p < 0.001) and CA15-3 (p = 0.017, 0.001) were significantly elevated in metastatic and non-metastatic BC patients compared to healthy controls, however, only YBX-1 (p 0.001) showed a significant difference with cancer metastasis. Generally, YBX-1 and IL-6 were correlated with worse histological grade and late clinical stage in breast cancer patients and they were also associated with axillary lymph nodes involvement and positive vascular invasion in metastatic BC patients. Serum YBX-1 and IL-6 levels were positively correlated to each other (rs = 0.615, p < 0.001) and they showed high sensitivity and specificity compared to CA 15-3 (p < 0.001 and p = 0.004 for YBX-1 and IL-6 respectively) for predicting cancer metastasis. Conclusions: Serum YBX-1 and IL-6 are potential biomarkers of breast cancer patients with significant correlation with bad clinicopathological characteristics. Serum YBX-1 and IL-6 have superior sensitivity and specificity compared to CA15-3 and can serve as potential follow up and prognostic markers.
基金supported by a grant from the Shanxi Province Foundation for Returness(2012-4)
文摘BACKGROUND: We previously showed that insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) is a novel mediator in liver fibrosis. Transforming growth factor beta 1 (TGF beta 1) is known as the strongest effector of liver fibrosis. Therefore, we aimed to investigate the detailed interaction between IGFBPrP1 and TGF beta 1 in primary hepatic stellate cells (HSCs). METHODS: We overexpressed TGF beta 1 or IGFBPrP1 and inhibited TGF beta 1 expression in primary HSCs for 6, 12, 24, 48, 72, and 96 hours to investigate their interaction and observe the accompanying expressions of a-smooth muscle actin (alpha-SMA), collagen I, fibronectin, and phosphorylated-mothers against decapentaplegic homolog 2/3 (p-Smad2/3). RESULTS: We found that the adenovirus vector encoding the TGF beta 1 gene (AdTGF beta 1) induced IGFBPrP1 expression while that of alpha-SMA, collagen I, fibronectin, and TGF beta 1 increased gradually. Concomitantly, AdIGFBPrP1 upregulated TGF beta 1, alpha-SMA, collagen I, fibronectin, and p-Smad2/3 in a time-dependent manner while IGFBPrP1 expression was decreased at 96 hours. Inhibition of TGF beta 1 expression reduced the IGFBPrP1-stimulated expression of alpha-SMA, collagen I, fibronectin, and p-Smad2/3. CONCLUSIONS: These findings for the first time suggest the existence of a possible mutually regulation between IGFBPrP1 and TGF beta 1, which likely accelerates liver fibrosis progression. Furthermore, IGFBPrP1 likely participates in liver fibrosis in a TGF beta 1-depedent manner, and may act as an upstream regulatory factor of TGF beta 1 in the Smad pathway.
文摘目的研究miR-483/CREB1轴在桃叶珊瑚苷(aucubin,AU)抑制人退行性髓核(nucleus pulposus,NP)细胞胞外基质(extracellular matrix,ECM)降解中的功能作用。方法AU处理人退行性NP细胞后,检测细胞活性、ECM相关蛋白及cAMP反应元件结合蛋白1(c AMP responsive element binding protein 1,CREB1)的表达。实时荧光定量PCR(quantitative real-time PCR,q PCR)和Western blot检测miR-483表达变化对CREB1丰度的影响;双荧光素酶报告实验(luciferase,LUC)检测miR-483和CREB1-3’-UTR的靶向结合;CREB1过表达载体和(或)miR-483 mimics共转染后,AU处理,检测CREB1及ECM相关蛋白的表达。结果AU可显著增强NP细胞活性(P=0.0004),抑制ECM降解酶基质金属蛋白酶-3(matrix metalloproteinase-3,MMP-3)、血小板反应蛋白解整合素金属肽酶-5(a disintegrin and metalloproteinase domain with thrombospondin motif-5,ADAMTS-5)与CREB1的表达,促进胶原蛋白Ⅱ型胶原α1(collagen type II alpha 1 chain,COL2A1)和miR-483的表达(P<0.001)。miR-483过表达可抑制CREB1的表达(P<0.0001),LUC实验表明miR-483可与CREB1-3’-UTR靶向结合。功能实验结果表明CREB1可削弱AU对NP细胞ECM的降解的抑制作用,而miR-483可部分逆转CREB1对AU的抑制作用。结论AU诱导NP细胞表达miR-483,进而抑制CREB1的表达,增强NP细胞的活性,抑制ECM的降解。
基金This study was supported by grants from the National Natural Science Foundation of China (No. 30871146), and the New Century Excellent Talent of the Ministry of Education of China (No. NCET-06-0264).
文摘Background Insulin-like growth factor binding protein-related protein 1 (IGFBPrP1) can activate hepatic stellate cells and increase extracellular matrix (ECM) in vitro. However, the effects of IGFBPrP1 in mice with hepatic fibrosis, and the mechanisms of these effects, are currently unknown. We aim to address these issues in this study. Methods Intraperitoneal injection of thioacetamide (TAA) is a classic method for establishing a mouse model of hepatic fibrosis. Using this model, we administered anti-IGFBPrP1 antibody, again via intraperitoneal injection. The morphological changes of liver fibrosis were observed with both HE and Masson stainning. The immunohistochemical assays and Western blotting were used to measure changes in IGFBPrP1, a-smooth muscle actin (a-SMA) and ECM in liver tissues, and the expression of transforming growth factor-β1 (TGF-β1) and Smad3. Data were statistically analyzed using one-way analysis of variance (ANOVA), the SNK-q test for inter-group differences. Results The Masson staining analysis showed that compared with normal control group, content of collagen fiber in TAA5w group was significantly increased (P 〈0.01), and it was significantly decreased in TAA5w/alGFBPrP1 group compared with in TAA5w group (P 〈0.01). The expression of hepatic IGFBPrP1, a-SMA, TGF-β1, Smad3, collagen 1 and fibronectin (FN) was significantly up-regulated in the TAA5w group (P 〈0.01). Anti-IGFBPrP1 treatment reversed these changes (P 〈0.01). Conclusions IGFBPrP1 plays an important role in the development of hepatic fibrosis. Anti-IGFBPrP1 prevents fibrosis in mice by suppressing the activation of hepatic stellate cells, inhibiting the synthesis of major components of the ECM (namely, collagen I and FN). The mechanism for this suppression of fibrosis is associated with the TGF-β1/Smad3 signaling pathways.