Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of differen...Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of different partial substitution treatments on crop yields and the transformation of nitrogen fractions in greenhouse vegetable soil.Four treatments with equal N,P_(2)O_(5),and K_(2)O inputs were selected,including complete inorganic fertilizer N(CN),50%inorganic fertilizer N plus 50%pig manure N(CPN),50%inorganic fertilizer N plus 25%pig manure N and 25%corn straw N(CPSN),and 50%inorganic fertilizer N plus 50%corn straw N(CSN).Organic substitution treatments tended to increase crop yields since the 6th cropping period compared to the CN treatment.From the 8th to the 22nd cropping periods,the highest yields were observed in the CPSN treatment where yields were 7.5-11.1%greater than in CN treatment.After 11-year fertilization,compared to CN,organic substitution treatments significantly increased the concentrations of NO_(3)^(-)-N,NH_(4)^(+)-N,acid hydrolysis ammonium-N(AHAN),amino acid-N(AAN),amino sugar-N(ASN),and acid hydrolysis unknown-N(AHUN)in soil by 45.0-69.4,32.8-58.1,49.3-66.6,62.0-69.5,34.5-100.3,and 109.2-172.9%,respectively.Redundancy analysis indicated that soil C/N and OC concentration significantly affected the distribution of N fractions.The highest concentrations of NO_(3)^(-)-N,AHAN,AAN,AHUN were found in the CPSN treatment.Organic substitution treatments increased the activities ofβ-glucosidase,β-cellobiosidase,N-acetyl-glucosamidase,L-aminopeptidase,and phosphatase in the soil.Organic substitution treatments reduced vector length and increased vector angle,indicating alleviation of constraints of C and N on soil microorganisms.Organic substitution treatments increased the total concentrations of phospholipid fatty acids(PLFAs)in the soil by 109.9-205.3%,and increased the relative abundance of G^(+)bacteria and fungi taxa,but decreased the relative abundance of G-bacteria,total bacteria,and actinomycetes.Overall,long-term organic substitution management increased soil OC concentration,C/N,and the microbial population,the latter in turn positively influenced soil enzyme activity.Enhanced microorganism numbers and enzyme activity enhanced soil N sequestration by transforming inorganic N to acid hydrolysis-N(AHN),and enhanced soil N supply capacity by activating non-acid hydrolysis-N(NAHN)to AHN,thus improving vegetable yield.Application of inorganic fertilizer,manure,and straw was a more effective fertilization model for achieving sustainable greenhouse vegetable production than application of inorganic fertilizer alone.展开更多
The migrating TdT<sup>+</sup> thymocytes can die in other tissues, promoting the surrounding cells’ renewing likes holocrine secretion does. To clarify the role of TdT-enzyme for this function of progenit...The migrating TdT<sup>+</sup> thymocytes can die in other tissues, promoting the surrounding cells’ renewing likes holocrine secretion does. To clarify the role of TdT-enzyme for this function of progenitor lymphocytes, their extracellular media with its components included by living cells analyzed <em>in vitro</em> before and after<em> in vivo</em> irradiation of donor rats. The nucleoid with DNase-sensitive (free) DNA and TdT activity discovered in extracellular media conditioned preliminary by spontaneous apoptotic death of a minor part of the thymocyte’s suspension <em>in vitro</em>. The penetration of labeled products of non-template synthesis with free DNA’ primers from media into cells by pinocytosis confirmed by exogenous polymeric DNA marked artificially. The DNA penetration into cells follows an increase of the cell’s viability and acceleration of spontaneous intracellular DNA-synthesis controlled with labeled thymidine uptake. Both phenomena are typical for either the lowest initial concentration of intact cells or their preliminary irradiation <em>in vivo</em>. The data point to possible involvement of apoptotic decay of TdT<sup>+</sup> cells in the reutilization of the extracellular DNA fragments for reparation/regeneration of surrounding living cells.展开更多
AIM: To investigate the functional significance of insulin-like growth factor binding protein-5 (IGFBP-5) overexpression in pancreatic cancer (PaC).METHODS: The effects of IGFBP-5 on cell growth were assessed by...AIM: To investigate the functional significance of insulin-like growth factor binding protein-5 (IGFBP-5) overexpression in pancreatic cancer (PaC).METHODS: The effects of IGFBP-5 on cell growth were assessed by stable transfection of BxPC-3 and PANC-1 cell lines and measuring cell number and DNA synthesis. Alterations in the cell cycle were assessed by flow cytometry and immunoblot analyses. Changes in cell survival and signal transduction were evaluated after mitogen and phosphatidylinositol activated protein kinase 3-kinase (PI3K) inhibitor treatment.RESULTS: After serum deprivation, IGFBP-5 expression increased both cell number and DNA synthesis in BxPC-3 cells, but reduced cell number in PANC-1 cells. Consistent with this observation, cell cycle analysis of IGFBP-5-expressing cells revealed accelerated cell cycle progression in BxPC-3 and G2/M arrest of PANC-1 cells. Signal transduction analysis revealed that Akt activation was increased in BxPC-3, but reduced in PANC-1 cells that express IGFBP-5. Inhibition of PI3K with LY294002 suppressed extracellular signal-regulated kinase-1 and -2 (ERK1/2) activation in BxPC-3, but enhanced ERK1/2 activation in PANC-1 cells that express IGFBP-5. When MEK1/2 was blocked, Akt activation remained elevated in IGFBP-5 expressing PaC cells; however, inhibition of PI3K or MEK1/2 abrogated IGFBP-5-mediated cell survival.CONCLUSION: These results indicate that IGFBP-5 expression affects the cell cycle and survival signal pathways and thus it may be an important mediator of PaC cell growth.展开更多
AIM: To investigate the inhibitory role and the underlying mechanisms of sorafenib on signal transducer and activator of transcription 3 (STAT3) activity in hepatocellular carcinoma (HCC).METHODS: Human and rat HCC ce...AIM: To investigate the inhibitory role and the underlying mechanisms of sorafenib on signal transducer and activator of transcription 3 (STAT3) activity in hepatocellular carcinoma (HCC).METHODS: Human and rat HCC cell lines were treated with sorafenib. Proliferation and STAT3 dephosphorylation were assessed. Potential molecular mechanisms of STAT3 pathway inhibition by sorafenib were evaluated. In vivo antitumor action and STAT3 inhibition were investigated in an immunocompetent orthotopic rat HCC model.RESULTS: Sorafenib decreased STAT3 phosphorylationat the tyrosine and serine residues (Y705 and S727), but did not affect Janus kinase 2 (JAK2) and phosphatase shatterproof 2 (SHP2), which is associated with growth inhibition in HCC cells. Dephosphorylation of S727 was associated with attenuated extracellular signal-regulated kinase (ERK) phosphorylation, similar to the effects of a mitogen-activated protein kinase (MEK) inhibitor U0126, suggesting that sorafenib induced S727 dephosphorylation by inhibiting MEK/ERK signaling. Meanwhile, sorafenib could also inhibit Akt phosphorylation, and both the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 and Akt knockdown resulted in Y705 dephosphorylation, indicating that Y705 dephosphorylation by sorafenib was mediated by inhibiting the PI3K/Akt pathway. Finally, in the rat HCC model, sorafenib signifi cantly inhibited STAT3 activity, reducing tumor growth and metastasis.CONCLUSION: Sorafenib inhibits growth and metastasis of HCC in part by blocking the MEK/ERK/STAT3 and PI3K/Akt/STAT3 signaling pathways, but independent of JAK2 and SHP2 activation.展开更多
Although returning crop residue to fields is a recommended measure for improving soil carbon(C)stocks in agroecosystems,the response of newly formed soil C(NFC)to the integrated supply of residue and nutrients and the...Although returning crop residue to fields is a recommended measure for improving soil carbon(C)stocks in agroecosystems,the response of newly formed soil C(NFC)to the integrated supply of residue and nutrients and the microbial mechanisms involved in NFC are not fully understood.Therefore,an 84-day incubation experiment was conducted to ascertain the microbial mechanisms that underpin the NFC response to inputs of residue and nitrogen(N),phosphorus(P),and sulfur(S)in two black(Phaeozem)soils from experimental plots at Gongzhuling,Jilin Province and Hailun,Heilongjiang Province,China.The results showed that adding residue alone accelerated microbial nutrient mining,which was supported by decreases of 8^(-1)6%in the ratios of C:N and C:P enzyme activities,relative to soils with nutrient inputs.The NFC amounts increased from 1156 to 1722 mg kg^(−1) in Gongzhuling soil and from 725 to 1067 mg kg^(−1) in Hailun soil as the levels of nutrient supplementation increased.Boosted regression tree analysis suggested thatβ-glucosidase(BG),acid phosphatase(AP),microbial biomass C(MBC),and Acidobacteria accounted for 27.8,18.5,14.7,and 8.1%,respectively,of the NFC in Gongzhuling soil and for 25.9,29.5,10.1,and 13.9%,respectively,of the NFC in Hailun soil.Path analysis determined that Acidobacteria positively influenced NFC both directly and indirectly by regulating BG,AP,and MBC,in which MBC acquisition was regulated more by AP.The amount of NFC was lower in Hailun soil than in Gongzhuling soil and was directly affected by AP,indicating the importance of soil properties such as SOC and pH in determining NFC.Overall,our results reveal the response of NFC to supplementation by N,P,and S,which depends on Acidobacteria and Proteobacteria,and their investment in BG and AP in residue-amended soil.展开更多
Microbial biomass and extracellular enzyme activities control the rate of soil organic carbon decomposition,thereby affecting soil carbon pool.However,seasonal dynamics of soil microbial properties at different depths...Microbial biomass and extracellular enzyme activities control the rate of soil organic carbon decomposition,thereby affecting soil carbon pool.However,seasonal dynamics of soil microbial properties at different depths of the soil profile remain unclear.In this study,we sampled soils in the early,middle and late growing season at different soil depths(0–100 cm)in two alpine ecosystems(meadow and shrubland)on the Tibetan Plateau.We measured plant belowground biomass,soil properties,microbial biomass and extracellular enzyme activities.We found that soil properties changed significantly with sampling time and soil depth.Specifically,most of soil properties consistently decreased with increasing soil depth,but inconsistently varied with sampling time.Moreover,root biomass and microbial biomass decreased with increasing soil depth and increased with sampling time during the growing season.However,microbial extracellular enzyme activities and their vector properties all changed with depth,but did not vary significantly with time.Taken together,these results show that soil properties,microbial biomass and extracellular enzyme activities mostly decline with increasing depth of the soil profile,and soil properties and microbial biomass are generally more variable during the growing season than extracellular enzyme activities across the soil profile in these alpine ecosystems.Further studies are needed to investigate the changes in soil microbial community composition and function at different soil depths over the growing season,which can enhance our mechanistic understanding of whole-profile soil carbon dynamics of alpine ecosystems under climate change.展开更多
IN recent years, calmodulin (CaM), an important Ca<sup>2+</sup> receptor and constituent of cellular signal transduction systems, has been found extracellularly. We have verified that CaM is presented ex...IN recent years, calmodulin (CaM), an important Ca<sup>2+</sup> receptor and constituent of cellular signal transduction systems, has been found extracellularly. We have verified that CaM is presented extracellularly in all of plant species we have examined. In addition, we have reported that extracellular CaM has some biological significance, such as stimulation of cell proliferation, cell wall regeneration, initiation of pollen germination and tube growth and inducement of rbcS gene expression. The role of heterotrimeric G proteins in pollen germination, tube growth and signal transduction of extracellular CaM has been examined in Lily pollen, and two kinds of antibodies against animal Gzα internal sequence and N-terminal展开更多
Soil microorganisms play a key role in soil organic matter dynamics, nutrient cycling, and soil fertility maintenance in forest ecosystems, and they are influenced by stand age and soil depth. However, few studies hav...Soil microorganisms play a key role in soil organic matter dynamics, nutrient cycling, and soil fertility maintenance in forest ecosystems, and they are influenced by stand age and soil depth. However, few studies have simultaneously considered these two factors. In this study, we measured soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), soil basal respiration (SBR) rate, and potential extracellular enzyme activity (EEA) in soil to a depth of 60 cm under 10-, 30-, and 40-year-old Scots pine (Pinus sylvestris var. mongolica) stands (Y10, Y30, and Y40, respectively) in plantations in northern China in 2011. Soil water content (SWC), soil pH, soil organic carbon (SOC), and soil total nitrogen (STN) were also measured to explore their effects on soil microbial indices across different stand ages and soil depths. Our results showed that SMBC, SMBN, and the SBR rate were generally higher for the Y30 stand than for the Y10 and Y40 stands. Potential EEA, except forα-glucosidase, decreased significantly with increasing stand age. Soil organic carbon,STN, SWC, and soil pH explained 67%of the variation in soil microbial attributes among the three stand ages. For the same stand age, soil microbial biomass and the SBR rate decreased with soil depth. Lower microbial biomass, lower SBR rate, and lower EEA for the mature Y40 stand indicate lower substrate availability for soil microorganisms, lower soil quality, and lower microbial adaptability to the environment. Our results suggest that changes in soil quality with stand age should be considered when determining the optimum rotation length of plantations and the best management practices for afforestation programs.展开更多
To understand the further impacts of multiple stressors in freshwater, we investigated the effects of heavy metal (HM, Cu and Zn) and nutrient enrichments (nitrogen and phosphorus, NP) on microbial decomposition o...To understand the further impacts of multiple stressors in freshwater, we investigated the effects of heavy metal (HM, Cu and Zn) and nutrient enrichments (nitrogen and phosphorus, NP) on microbial decomposition of Pterocarya stenoptera litter and the associated extracellular enzyme activities and microbial biomass with microcosms. Results showed that the decomposition rates were slower in the polluted stream waters than those in the unpolluted ones, which corresponded to lower microbial biomass and integrated enzyme activities of cellulose and ^-glucosidase. The decomposition rates were accelerated at low HM level, which was associated with the stimulated enzyme activities of hydrolytic enzymes or was stimulated by both NP levels in polluted stream waters. In particular, the hydrolase enzyme activities of microbial communities in polluted stream waters were stimulated by low HM level, suggesting that low HM level-stimulated litter decomposition may be due to the increased enzymatic activities. When microbial communities were exposed to HM and NP simultaneously, the inhibitory effect (in unpolluted stream waters) or the stimulated effect (in polluted stream waters) of low HM concentration was enhanced and attenuated, respectively, which suggests that the NP antagonistic effect against HM toxicity on litter decomposition may contribute to the litter- associated extracellular enzyme activities. These results suggest that the may have antagonistic effects on stream ecosystem functioning. of HM and NP展开更多
Millions of tons of waste activated sludge(WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critica...Millions of tons of waste activated sludge(WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critical for sustainable sludge management. In this work, the occurrence and distribution of several fundamental sludge constituents were explored in WAS samples from nine full-scale wastewater treatment plants(WWTPs) of Beijing, China. Among all the components investigated, active heterotrophic biomass was dominant in the samples(up to 9478 mg/L), followed by endogenous residues(6736 mg/L),extracellular polymeric substances(2088 mg/L), and intracellular storage products(464 mg/L)among others. Moreover, significant differences(p 〈 0.05) were observed in composition profiles of sludge samples among the studied WWTPs. To identify the potential parameters affecting the variable fractions of sludge components, wastewater source as well as design and operational parameters of WWTPs were studied using statistical methods. The findings indicated that the component fraction of sewage sludge depends more on wastewater treatment alternatives than on wastewater characteristics among other parameters. A principal component analysis was conducted, which further indicated that there was a greater proportion of residual inert biomass in the sludge produced by the combined system of the conventional anaerobic/anoxic/oxic process and a membrane bioreactor. Additionally, a much longer solids retention time was also found to influence the sludge composition and induce an increase in both endogenous inert residues and extracellular polymeric substances in the sludge.展开更多
基金supported by the earmarked fund for China Agriculture Research System(CARS-23-B04)the National Key Research and Development Program of China(2016YFD0201001)HAAFS Science and Technology Innovation Special Project,China(2022KJCXZX-ZHS-2).
文摘Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of different partial substitution treatments on crop yields and the transformation of nitrogen fractions in greenhouse vegetable soil.Four treatments with equal N,P_(2)O_(5),and K_(2)O inputs were selected,including complete inorganic fertilizer N(CN),50%inorganic fertilizer N plus 50%pig manure N(CPN),50%inorganic fertilizer N plus 25%pig manure N and 25%corn straw N(CPSN),and 50%inorganic fertilizer N plus 50%corn straw N(CSN).Organic substitution treatments tended to increase crop yields since the 6th cropping period compared to the CN treatment.From the 8th to the 22nd cropping periods,the highest yields were observed in the CPSN treatment where yields were 7.5-11.1%greater than in CN treatment.After 11-year fertilization,compared to CN,organic substitution treatments significantly increased the concentrations of NO_(3)^(-)-N,NH_(4)^(+)-N,acid hydrolysis ammonium-N(AHAN),amino acid-N(AAN),amino sugar-N(ASN),and acid hydrolysis unknown-N(AHUN)in soil by 45.0-69.4,32.8-58.1,49.3-66.6,62.0-69.5,34.5-100.3,and 109.2-172.9%,respectively.Redundancy analysis indicated that soil C/N and OC concentration significantly affected the distribution of N fractions.The highest concentrations of NO_(3)^(-)-N,AHAN,AAN,AHUN were found in the CPSN treatment.Organic substitution treatments increased the activities ofβ-glucosidase,β-cellobiosidase,N-acetyl-glucosamidase,L-aminopeptidase,and phosphatase in the soil.Organic substitution treatments reduced vector length and increased vector angle,indicating alleviation of constraints of C and N on soil microorganisms.Organic substitution treatments increased the total concentrations of phospholipid fatty acids(PLFAs)in the soil by 109.9-205.3%,and increased the relative abundance of G^(+)bacteria and fungi taxa,but decreased the relative abundance of G-bacteria,total bacteria,and actinomycetes.Overall,long-term organic substitution management increased soil OC concentration,C/N,and the microbial population,the latter in turn positively influenced soil enzyme activity.Enhanced microorganism numbers and enzyme activity enhanced soil N sequestration by transforming inorganic N to acid hydrolysis-N(AHN),and enhanced soil N supply capacity by activating non-acid hydrolysis-N(NAHN)to AHN,thus improving vegetable yield.Application of inorganic fertilizer,manure,and straw was a more effective fertilization model for achieving sustainable greenhouse vegetable production than application of inorganic fertilizer alone.
文摘The migrating TdT<sup>+</sup> thymocytes can die in other tissues, promoting the surrounding cells’ renewing likes holocrine secretion does. To clarify the role of TdT-enzyme for this function of progenitor lymphocytes, their extracellular media with its components included by living cells analyzed <em>in vitro</em> before and after<em> in vivo</em> irradiation of donor rats. The nucleoid with DNase-sensitive (free) DNA and TdT activity discovered in extracellular media conditioned preliminary by spontaneous apoptotic death of a minor part of the thymocyte’s suspension <em>in vitro</em>. The penetration of labeled products of non-template synthesis with free DNA’ primers from media into cells by pinocytosis confirmed by exogenous polymeric DNA marked artificially. The DNA penetration into cells follows an increase of the cell’s viability and acceleration of spontaneous intracellular DNA-synthesis controlled with labeled thymidine uptake. Both phenomena are typical for either the lowest initial concentration of intact cells or their preliminary irradiation <em>in vivo</em>. The data point to possible involvement of apoptotic decay of TdT<sup>+</sup> cells in the reutilization of the extracellular DNA fragments for reparation/regeneration of surrounding living cells.
基金Supported by A grant from the Arkansas Master Tobacco Settlement and Arkansas Biosciences Institute
文摘AIM: To investigate the functional significance of insulin-like growth factor binding protein-5 (IGFBP-5) overexpression in pancreatic cancer (PaC).METHODS: The effects of IGFBP-5 on cell growth were assessed by stable transfection of BxPC-3 and PANC-1 cell lines and measuring cell number and DNA synthesis. Alterations in the cell cycle were assessed by flow cytometry and immunoblot analyses. Changes in cell survival and signal transduction were evaluated after mitogen and phosphatidylinositol activated protein kinase 3-kinase (PI3K) inhibitor treatment.RESULTS: After serum deprivation, IGFBP-5 expression increased both cell number and DNA synthesis in BxPC-3 cells, but reduced cell number in PANC-1 cells. Consistent with this observation, cell cycle analysis of IGFBP-5-expressing cells revealed accelerated cell cycle progression in BxPC-3 and G2/M arrest of PANC-1 cells. Signal transduction analysis revealed that Akt activation was increased in BxPC-3, but reduced in PANC-1 cells that express IGFBP-5. Inhibition of PI3K with LY294002 suppressed extracellular signal-regulated kinase-1 and -2 (ERK1/2) activation in BxPC-3, but enhanced ERK1/2 activation in PANC-1 cells that express IGFBP-5. When MEK1/2 was blocked, Akt activation remained elevated in IGFBP-5 expressing PaC cells; however, inhibition of PI3K or MEK1/2 abrogated IGFBP-5-mediated cell survival.CONCLUSION: These results indicate that IGFBP-5 expression affects the cell cycle and survival signal pathways and thus it may be an important mediator of PaC cell growth.
基金Supported by Grants from the China 863 Project, No. 2007A-A02Z479the National Natural Science Foundation of China, No. 30972949 and 30901432+1 种基金Shanghai Rising-Star Program, No. 10QA1401300Research Fund for the Doctoral Program of Higher Education of China, No. 20090071120026
文摘AIM: To investigate the inhibitory role and the underlying mechanisms of sorafenib on signal transducer and activator of transcription 3 (STAT3) activity in hepatocellular carcinoma (HCC).METHODS: Human and rat HCC cell lines were treated with sorafenib. Proliferation and STAT3 dephosphorylation were assessed. Potential molecular mechanisms of STAT3 pathway inhibition by sorafenib were evaluated. In vivo antitumor action and STAT3 inhibition were investigated in an immunocompetent orthotopic rat HCC model.RESULTS: Sorafenib decreased STAT3 phosphorylationat the tyrosine and serine residues (Y705 and S727), but did not affect Janus kinase 2 (JAK2) and phosphatase shatterproof 2 (SHP2), which is associated with growth inhibition in HCC cells. Dephosphorylation of S727 was associated with attenuated extracellular signal-regulated kinase (ERK) phosphorylation, similar to the effects of a mitogen-activated protein kinase (MEK) inhibitor U0126, suggesting that sorafenib induced S727 dephosphorylation by inhibiting MEK/ERK signaling. Meanwhile, sorafenib could also inhibit Akt phosphorylation, and both the phosphatidylinositol-3-kinase (PI3K) inhibitor LY294002 and Akt knockdown resulted in Y705 dephosphorylation, indicating that Y705 dephosphorylation by sorafenib was mediated by inhibiting the PI3K/Akt pathway. Finally, in the rat HCC model, sorafenib signifi cantly inhibited STAT3 activity, reducing tumor growth and metastasis.CONCLUSION: Sorafenib inhibits growth and metastasis of HCC in part by blocking the MEK/ERK/STAT3 and PI3K/Akt/STAT3 signaling pathways, but independent of JAK2 and SHP2 activation.
基金financially supported by the Agro-scientific Research in the Public Interest of China (201503122)the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (CAASXTCX2016008)the National Natural Science Foundation of China (41620104006)
文摘Although returning crop residue to fields is a recommended measure for improving soil carbon(C)stocks in agroecosystems,the response of newly formed soil C(NFC)to the integrated supply of residue and nutrients and the microbial mechanisms involved in NFC are not fully understood.Therefore,an 84-day incubation experiment was conducted to ascertain the microbial mechanisms that underpin the NFC response to inputs of residue and nitrogen(N),phosphorus(P),and sulfur(S)in two black(Phaeozem)soils from experimental plots at Gongzhuling,Jilin Province and Hailun,Heilongjiang Province,China.The results showed that adding residue alone accelerated microbial nutrient mining,which was supported by decreases of 8^(-1)6%in the ratios of C:N and C:P enzyme activities,relative to soils with nutrient inputs.The NFC amounts increased from 1156 to 1722 mg kg^(−1) in Gongzhuling soil and from 725 to 1067 mg kg^(−1) in Hailun soil as the levels of nutrient supplementation increased.Boosted regression tree analysis suggested thatβ-glucosidase(BG),acid phosphatase(AP),microbial biomass C(MBC),and Acidobacteria accounted for 27.8,18.5,14.7,and 8.1%,respectively,of the NFC in Gongzhuling soil and for 25.9,29.5,10.1,and 13.9%,respectively,of the NFC in Hailun soil.Path analysis determined that Acidobacteria positively influenced NFC both directly and indirectly by regulating BG,AP,and MBC,in which MBC acquisition was regulated more by AP.The amount of NFC was lower in Hailun soil than in Gongzhuling soil and was directly affected by AP,indicating the importance of soil properties such as SOC and pH in determining NFC.Overall,our results reveal the response of NFC to supplementation by N,P,and S,which depends on Acidobacteria and Proteobacteria,and their investment in BG and AP in residue-amended soil.
基金the National Natural Science Foundation of China(31971528 and 31988102).
文摘Microbial biomass and extracellular enzyme activities control the rate of soil organic carbon decomposition,thereby affecting soil carbon pool.However,seasonal dynamics of soil microbial properties at different depths of the soil profile remain unclear.In this study,we sampled soils in the early,middle and late growing season at different soil depths(0–100 cm)in two alpine ecosystems(meadow and shrubland)on the Tibetan Plateau.We measured plant belowground biomass,soil properties,microbial biomass and extracellular enzyme activities.We found that soil properties changed significantly with sampling time and soil depth.Specifically,most of soil properties consistently decreased with increasing soil depth,but inconsistently varied with sampling time.Moreover,root biomass and microbial biomass decreased with increasing soil depth and increased with sampling time during the growing season.However,microbial extracellular enzyme activities and their vector properties all changed with depth,but did not vary significantly with time.Taken together,these results show that soil properties,microbial biomass and extracellular enzyme activities mostly decline with increasing depth of the soil profile,and soil properties and microbial biomass are generally more variable during the growing season than extracellular enzyme activities across the soil profile in these alpine ecosystems.Further studies are needed to investigate the changes in soil microbial community composition and function at different soil depths over the growing season,which can enhance our mechanistic understanding of whole-profile soil carbon dynamics of alpine ecosystems under climate change.
文摘IN recent years, calmodulin (CaM), an important Ca<sup>2+</sup> receptor and constituent of cellular signal transduction systems, has been found extracellularly. We have verified that CaM is presented extracellularly in all of plant species we have examined. In addition, we have reported that extracellular CaM has some biological significance, such as stimulation of cell proliferation, cell wall regeneration, initiation of pollen germination and tube growth and inducement of rbcS gene expression. The role of heterotrimeric G proteins in pollen germination, tube growth and signal transduction of extracellular CaM has been examined in Lily pollen, and two kinds of antibodies against animal Gzα internal sequence and N-terminal
基金This study was supported by projects of the National Natural Science Foundation of China(Nos.31972939,31630009 and 31670325)the National Basic Research Pro-gram of China(No.2016YFC0500701)+1 种基金the Research Fund of the State Key Laboratory of Soil and Sustainable Agri-culture,Nanjing Institute of Soil Science,Chinese Academy of Sciences(No.Y412201439)the University Con-struction Projects from the Central Authorities in Beiing of China.
文摘Soil microorganisms play a key role in soil organic matter dynamics, nutrient cycling, and soil fertility maintenance in forest ecosystems, and they are influenced by stand age and soil depth. However, few studies have simultaneously considered these two factors. In this study, we measured soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), soil basal respiration (SBR) rate, and potential extracellular enzyme activity (EEA) in soil to a depth of 60 cm under 10-, 30-, and 40-year-old Scots pine (Pinus sylvestris var. mongolica) stands (Y10, Y30, and Y40, respectively) in plantations in northern China in 2011. Soil water content (SWC), soil pH, soil organic carbon (SOC), and soil total nitrogen (STN) were also measured to explore their effects on soil microbial indices across different stand ages and soil depths. Our results showed that SMBC, SMBN, and the SBR rate were generally higher for the Y30 stand than for the Y10 and Y40 stands. Potential EEA, except forα-glucosidase, decreased significantly with increasing stand age. Soil organic carbon,STN, SWC, and soil pH explained 67%of the variation in soil microbial attributes among the three stand ages. For the same stand age, soil microbial biomass and the SBR rate decreased with soil depth. Lower microbial biomass, lower SBR rate, and lower EEA for the mature Y40 stand indicate lower substrate availability for soil microorganisms, lower soil quality, and lower microbial adaptability to the environment. Our results suggest that changes in soil quality with stand age should be considered when determining the optimum rotation length of plantations and the best management practices for afforestation programs.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment(No.2012ZX07204-004-003)the Ph.D Programs Foundation of Ministry of Education of China(No.20110091110018)+1 种基金the "Strategic Priority Research Program-Climate Change:Carbon Budget and Related Issues" of the Chinese Academy of Sciences(No.XDA05050204)the National Science and Technology Infrastructure Platforms from Ministry of Science and Technology(No.2005DKA21403-JK)
文摘To understand the further impacts of multiple stressors in freshwater, we investigated the effects of heavy metal (HM, Cu and Zn) and nutrient enrichments (nitrogen and phosphorus, NP) on microbial decomposition of Pterocarya stenoptera litter and the associated extracellular enzyme activities and microbial biomass with microcosms. Results showed that the decomposition rates were slower in the polluted stream waters than those in the unpolluted ones, which corresponded to lower microbial biomass and integrated enzyme activities of cellulose and ^-glucosidase. The decomposition rates were accelerated at low HM level, which was associated with the stimulated enzyme activities of hydrolytic enzymes or was stimulated by both NP levels in polluted stream waters. In particular, the hydrolase enzyme activities of microbial communities in polluted stream waters were stimulated by low HM level, suggesting that low HM level-stimulated litter decomposition may be due to the increased enzymatic activities. When microbial communities were exposed to HM and NP simultaneously, the inhibitory effect (in unpolluted stream waters) or the stimulated effect (in polluted stream waters) of low HM concentration was enhanced and attenuated, respectively, which suggests that the NP antagonistic effect against HM toxicity on litter decomposition may contribute to the litter- associated extracellular enzyme activities. These results suggest that the may have antagonistic effects on stream ecosystem functioning. of HM and NP
基金supported by the National Natural Science Foundation of China(Nos.51408589 and 51138009)State Key Joint Laboratory of Environment Simulation and Pollution Control of China(Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences,No.14Z03ESPCR)Youth Innovation Promotion Association of the Chinese Academy of Sciences
文摘Millions of tons of waste activated sludge(WAS) produced from biological wastewater treatment processes cause severe adverse environmental consequences. A better understanding of WAS composition is thus very critical for sustainable sludge management. In this work, the occurrence and distribution of several fundamental sludge constituents were explored in WAS samples from nine full-scale wastewater treatment plants(WWTPs) of Beijing, China. Among all the components investigated, active heterotrophic biomass was dominant in the samples(up to 9478 mg/L), followed by endogenous residues(6736 mg/L),extracellular polymeric substances(2088 mg/L), and intracellular storage products(464 mg/L)among others. Moreover, significant differences(p 〈 0.05) were observed in composition profiles of sludge samples among the studied WWTPs. To identify the potential parameters affecting the variable fractions of sludge components, wastewater source as well as design and operational parameters of WWTPs were studied using statistical methods. The findings indicated that the component fraction of sewage sludge depends more on wastewater treatment alternatives than on wastewater characteristics among other parameters. A principal component analysis was conducted, which further indicated that there was a greater proportion of residual inert biomass in the sludge produced by the combined system of the conventional anaerobic/anoxic/oxic process and a membrane bioreactor. Additionally, a much longer solids retention time was also found to influence the sludge composition and induce an increase in both endogenous inert residues and extracellular polymeric substances in the sludge.