期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Attack Behavior Extraction Based on Heterogeneous Cyberthreat Intelligence and Graph Convolutional Networks 被引量:1
1
作者 Binhui Tang Junfeng Wang +3 位作者 Huanran Qiu Jian Yu Zhongkun Yu Shijia Liu 《Computers, Materials & Continua》 SCIE EI 2023年第1期235-252,共18页
The continuous improvement of the cyber threat intelligence sharing mechanism provides new ideas to deal with Advanced Persistent Threats(APT).Extracting attack behaviors,i.e.,Tactics,Techniques,Procedures(TTP)from Cy... The continuous improvement of the cyber threat intelligence sharing mechanism provides new ideas to deal with Advanced Persistent Threats(APT).Extracting attack behaviors,i.e.,Tactics,Techniques,Procedures(TTP)from Cyber Threat Intelligence(CTI)can facilitate APT actors’profiling for an immediate response.However,it is difficult for traditional manual methods to analyze attack behaviors from cyber threat intelligence due to its heterogeneous nature.Based on the Adversarial Tactics,Techniques and Common Knowledge(ATT&CK)of threat behavior description,this paper proposes a threat behavioral knowledge extraction framework that integrates Heterogeneous Text Network(HTN)and Graph Convolutional Network(GCN)to solve this issue.It leverages the hierarchical correlation relationships of attack techniques and tactics in the ATT&CK to construct a text network of heterogeneous cyber threat intelligence.With the help of the Bidirectional EncoderRepresentation fromTransformers(BERT)pretraining model to analyze the contextual semantics of cyber threat intelligence,the task of threat behavior identification is transformed into a text classification task,which automatically extracts attack behavior in CTI,then identifies the malware and advanced threat actors.The experimental results show that F1 achieve 94.86%and 92.15%for the multi-label classification tasks of tactics and techniques.Extend the experiment to verify the method’s effectiveness in identifying the malware and threat actors in APT attacks.The F1 for malware and advanced threat actors identification task reached 98.45%and 99.48%,which are better than the benchmark model in the experiment and achieve state of the art.The model can effectivelymodel threat intelligence text data and acquire knowledge and experience migration by correlating implied features with a priori knowledge to compensate for insufficient sample data and improve the classification performance and recognition ability of threat behavior in text. 展开更多
关键词 Attack behavior extraction cyber threat intelligence(CTI) graph convolutional network(GCN) heterogeneous textual network(HTN)
下载PDF
Behavior pattern extraction by trajectory analysis
2
作者 Jia Wen (12) wjyanyuan@yahoo.com.cn Chao Li (1) Zhang Xiong (1) 《Frontiers of Computer Science》 SCIE EI CSCD 2011年第1期37-44,共8页
Trajectory clustering and behavior pattern extraction are the foundations of research into activity perception of objects in motion. In this paper, a new framework is proposed to extract behavior patterns through traj... Trajectory clustering and behavior pattern extraction are the foundations of research into activity perception of objects in motion. In this paper, a new framework is proposed to extract behavior patterns through trajectory analysis. Firstly, we introduce directional trimmed mean distance (DTMD), a novel method used to measure similarity between trajectories. DTMD has the attributes of anti-noise, self-adaptation and the capability to determine the direction for each trajectory. Secondly, we use a hierarchical clustering algorithm to cluster trajectories. We design a length-weighted linkage rule to enhance the accuracy of trajectory clustering and reduce problems associated with incomplete trajectories. Thirdly, the motion model parameters are estimated for each trajectory's classification, and behavior patterns for trajectories are extracted. Finally, the difference between normal and abnormal behaviors can be distinguished. 展开更多
关键词 trajectory clustering directional trimmedmean distance (DTMD) behavior pattern extraction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部