期刊文献+
共找到1,391篇文章
< 1 2 70 >
每页显示 20 50 100
A Novel Image Classification Algorithm Based on Extreme Learning Machine 被引量:1
1
作者 YU Jing SONG Wei +2 位作者 LI Ming HOU Jianjun WANG Nan 《China Communications》 SCIE CSCD 2015年第S2期48-54,共7页
In order to improve the accuracy and reduce the training and testing time in image classification algorithm, a novel image classification scheme based on extreme learning machine(ELM) and linear spatial pyramid matchi... In order to improve the accuracy and reduce the training and testing time in image classification algorithm, a novel image classification scheme based on extreme learning machine(ELM) and linear spatial pyramid matching using sparse coding(Sc SPM) for image classification is proposed. A new structure based on two layer extreme learning machine instead of the original linear SVM classifier is constructed. Firstly, the Sc SPM algorithm is performed to extract features of the multi-scale image blocks, and then each layer feature vector is connected to an ELM. Finally, the mapping features are connected together, and as the input of one ELM based on radial basis kernel function. With experimental evaluations on the well-known dataset benchmarks, the results demonstrate that the proposed algorithm has better performance not only in reducing the training time, but also in improving the accuracy of classification. 展开更多
关键词 extreme learning machine IMAGE CLASSIFICATION algorithm
下载PDF
Identification of Crop Diseases Based on Improved Genetic Algorithm and Extreme Learning Machine 被引量:2
2
作者 Linguo Li Lijuan Sun +2 位作者 Jian Guo Shujing Li Ping Jiang 《Computers, Materials & Continua》 SCIE EI 2020年第10期761-775,共15页
As an indispensable task in crop protection,the detection of crop diseases directly impacts the income of farmers.To address the problems of low crop-disease identification precision and detection abilities,a new meth... As an indispensable task in crop protection,the detection of crop diseases directly impacts the income of farmers.To address the problems of low crop-disease identification precision and detection abilities,a new method of detection is proposed based on improved genetic algorithm and extreme learning machine.Taking five different typical diseases with common crops as the objects,this method first preprocesses the images of crops and selects the optimal features for fusion.Then,it builds a model of crop disease identification for extreme learning machine,introduces the hill-climbing algorithm to improve the traditional genetic algorithm,optimizes the initial weights and thresholds of the machine,and acquires the approximately optimal solution.And finally,a data set of crop diseases is used for verification,demonstrating that,compared with several other common machine learning methods,this method can effectively improve the crop-disease identification precision and detection abilities and provide a basis for the identification of other crop diseases. 展开更多
关键词 CROPS disease identification extreme learning machine improved genetic algorithm
下载PDF
Towards Improving the Intrusion Detection through ELM (Extreme Learning Machine)
3
作者 Iftikhar Ahmad Rayan Atteah Alsemmeari 《Computers, Materials & Continua》 SCIE EI 2020年第11期1097-1111,共15页
An IDS(intrusion detection system)provides a foremost front line mechanism to guard networks,systems,data,and information.That’s why intrusion detection has grown as an active study area and provides significant cont... An IDS(intrusion detection system)provides a foremost front line mechanism to guard networks,systems,data,and information.That’s why intrusion detection has grown as an active study area and provides significant contribution to cyber-security techniques.Multiple techniques have been in use but major concern in their implementation is variation in their detection performance.The performance of IDS lies in the accurate detection of attacks,and this accuracy can be raised by improving the recognition rate and significant reduction in the false alarms rate.To overcome this problem many researchers have used different machine learning techniques.These techniques have limitations and do not efficiently perform on huge and complex data about systems and networks.This work focused on ELM(Extreme Learning Machine)technique due to its good capabilities in classification problems and dealing with huge data.The ELM has different activation functions,but the problem is to find out which function is more suitable and performs well in IDS.This work investigates this problem.Here,Well-known activation functions like:sine,sigmoid and radial basis are explored,investigated and applied to measure their performance on the GA(Genetic Algorithm)features subset and with full features set.The NSL-KDD dataset is used as a benchmark.The empirical results are analyzed,addressed and compared among different activation functions of the ELM.The results show that the radial basis and sine functions perform better on GA feature set than the full feature set while the performance of the sigmoid function is almost equal on both features sets.So,the proposal of GA based feature selection reduced 21 features out of 41 that brought up to 98%accuracy and enhanced overall efficiency of extreme learning machine in intrusion detection. 展开更多
关键词 ACCURACY extreme learning machine sine function sigmoid function radial basis genetic algorithm NSL-KDD
下载PDF
A soft sensor for industrial melt index prediction based on evolutionary extreme learning machine 被引量:6
4
作者 Miao Zhang Xinggao Liu Zeyin Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第8期1013-1019,共7页
In propylene polymerization(PP) process, the melt index(MI) is one of the most important quality variables for determining different brands of products and different grades of product quality. Accurate prediction of M... In propylene polymerization(PP) process, the melt index(MI) is one of the most important quality variables for determining different brands of products and different grades of product quality. Accurate prediction of MI is essential for efficient and professional monitoring and control of practical PP processes. This paper presents a novel soft sensor based on extreme learning machine(ELM) and modified gravitational search algorithm(MGSA) to estimate MI from real PP process variables, where the MGSA algorithm is developed to find the best parameters of input weights and hidden biases for ELM. As the comparative basis, the models of ELM, APSO-ELM and GSAELM are also developed respectively. Based on the data from a real PP production plant, a detailed comparison of the models is carried out. The research results show the accuracy and universality of the proposed model and it can be a powerful tool for online MI prediction. 展开更多
关键词 PROPYLENE POLYMERIZATION MELT index PREDICTION extreme learning machine GRAVITATIONAL search algorithm
下载PDF
Fast cross validation for regularized extreme learning machine 被引量:9
5
作者 Yongping Zhao Kangkang Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第5期895-900,共6页
A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is oppo... A method for fast 1-fold cross validation is proposed for the regularized extreme learning machine (RELM). The computational time of fast l-fold cross validation increases as the fold number decreases, which is opposite to that of naive 1-fold cross validation. As opposed to naive l-fold cross validation, fast l-fold cross validation takes the advantage in terms of computational time, especially for the large fold number such as l 〉 20. To corroborate the efficacy and feasibility of fast l-fold cross validation, experiments on five benchmark regression data sets are evaluated. 展开更多
关键词 extreme learning machine (elm regularization theory cross validation neural networks.
下载PDF
Prediction of length-of-day using extreme learning machine 被引量:5
6
作者 Lei Yu Zhao Danning Cai Hongbing 《Geodesy and Geodynamics》 2015年第2期151-159,共9页
Traditional artificial neural networks (ANN) such as back-propagation neural networks (BPNN) provide good predictions of length-of-day (LOD). However, the determination of network topology is difficult and time ... Traditional artificial neural networks (ANN) such as back-propagation neural networks (BPNN) provide good predictions of length-of-day (LOD). However, the determination of network topology is difficult and time consuming. Therefore, we propose a new type of neural network, extreme learning machine (ELM), to improve the efficiency of LOD predictions. Earth orientation parameters (EOP) C04 time-series provides daily values from International Earth Rotation and Reference Systems Service (IERS), which serves as our database. First, the known predictable effects that can be described by functional models-such as the effects of solid earth, ocean tides, or seasonal atmospheric variations--are removed a priori from the C04 time-series. Only the residuals after the subtraction of a priori model from the observed LOD data (i.e., the irregular and quasi-periodic variations) are employed for training and predictions. The predicted LOD is the sum of a prior extrapolation model and the ELM predictions of the residuals. Different input patterns are discussed and compared to optimize the network solution. The prediction results are analyzed and compared with those obtained by other machine learning-based prediction methods, including BPNN, generalization regression neural networks (GRNN), and adaptive network-based fuzzy inference systems (ANFIS). It is shown that while achieving similar prediction accuracy, the developed method uses much less training time than other methods. Furthermore, to conduct a direct comparison with the existing prediction tech- niques, the mean-absolute-error (MAE) from the proposed method is compared with that from the EOP prediction comparison campaign (EOP PCC). The results indicate that the accuracy of the proposed method is comparable with that of the former techniques. The implementation of the proposed method is simple. 展开更多
关键词 Length-of-day (LOD) Predictionextreme learning machine (elm Artificial neural networks (ANN) extreme learning machine (elm Earth orientation parameters (EOP)EOP prediction comparison campaign (EOP PCC)Least squares
下载PDF
A new approach for epileptic seizure detection: sample entropy based feature extraction and extreme learning machine 被引量:8
7
作者 Yuedong Song Pietro Liò 《Journal of Biomedical Science and Engineering》 2010年第6期556-567,共12页
The electroencephalogram (EEG) signal plays a key role in the diagnosis of epilepsy. Substantial data is generated by the EEG recordings of ambulatory recording systems, and detection of epileptic activity requires a ... The electroencephalogram (EEG) signal plays a key role in the diagnosis of epilepsy. Substantial data is generated by the EEG recordings of ambulatory recording systems, and detection of epileptic activity requires a time-consuming analysis of the complete length of the EEG time series data by a neurology expert. A variety of automatic epilepsy detection systems have been developed during the last ten years. In this paper, we investigate the potential of a recently-proposed statistical measure parameter regarded as Sample Entropy (SampEn), as a method of feature extraction to the task of classifying three different kinds of EEG signals (normal, interictal and ictal) and detecting epileptic seizures. It is known that the value of the SampEn falls suddenly during an epileptic seizure and this fact is utilized in the proposed diagnosis system. Two different kinds of classification models, back-propagation neural network (BPNN) and the recently-developed extreme learning machine (ELM) are tested in this study. Results show that the proposed automatic epilepsy detection system which uses sample entropy (SampEn) as the only input feature, together with extreme learning machine (ELM) classification model, not only achieves high classification accuracy (95.67%) but also very fast speed. 展开更多
关键词 Epileptic SEIZURE ELECTROENCEPHALOGRAM (EEG) SAMPLE Entropy (SampEn) Backpropagation Neural Network (BPNN) extreme learning machine (elm) Detection
下载PDF
Constrained voting extreme learning machine and its application 被引量:5
8
作者 MIN Mengcan CHEN Xiaofang XIE Yongfang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期209-219,共11页
Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.Wit... Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.With the increase of the nodes in the hidden layers,the computation cost is greatly increased.In this paper,we propose a novel algorithm,named constrained voting extreme learning machine(CV-ELM).Compared with the traditional ELM,the CV-ELM determines the input weight and bias based on the differences of between-class samples.At the same time,to improve the accuracy of the proposed method,the voting selection is introduced.The proposed method is evaluated on public benchmark datasets.The experimental results show that the proposed algorithm is superior to the original ELM algorithm.Further,we apply the CV-ELM to the classification of superheat degree(SD)state in the aluminum electrolysis industry,and the recognition accuracy rate reaches87.4%,and the experimental results demonstrate that the proposed method is more robust than the existing state-of-the-art identification methods. 展开更多
关键词 extreme learning machine(elm) majority voting ensemble method sample based learning superheat degree(SD)
下载PDF
Swarm-Based Extreme Learning Machine Models for Global Optimization
9
作者 Mustafa Abdul Salam Ahmad Taher Azar Rana Hussien 《Computers, Materials & Continua》 SCIE EI 2022年第3期6339-6363,共25页
Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapid... Extreme Learning Machine(ELM)is popular in batch learning,sequential learning,and progressive learning,due to its speed,easy integration,and generalization ability.While,Traditional ELM cannot train massive data rapidly and efficiently due to its memory residence,high time and space complexity.In ELM,the hidden layer typically necessitates a huge number of nodes.Furthermore,there is no certainty that the arrangement of weights and biases within the hidden layer is optimal.To solve this problem,the traditional ELM has been hybridized with swarm intelligence optimization techniques.This paper displays five proposed hybrid Algorithms“Salp Swarm Algorithm(SSA-ELM),Grasshopper Algorithm(GOA-ELM),Grey Wolf Algorithm(GWO-ELM),Whale optimizationAlgorithm(WOA-ELM)andMoth Flame Optimization(MFO-ELM)”.These five optimizers are hybridized with standard ELM methodology for resolving the tumor type classification using gene expression data.The proposed models applied to the predication of electricity loading data,that describes the energy use of a single residence over a fouryear period.In the hidden layer,Swarm algorithms are used to pick a smaller number of nodes to speed up the execution of ELM.The best weights and preferences were calculated by these algorithms for the hidden layer.Experimental results demonstrated that the proposed MFO-ELM achieved 98.13%accuracy and this is the highest model in accuracy in tumor type classification gene expression data.While in predication,the proposed GOA-ELM achieved 0.397which is least RMSE compared to the other models. 展开更多
关键词 extreme learning machine salp swarm optimization algorithm grasshopper optimization algorithm grey wolf optimization algorithm moth flame optimization algorithm bio-inspired optimization classification model and whale optimization algorithm
下载PDF
Assessment of glaucoma using extreme learning machine and fractal feature analysis
10
作者 Subramaniam Kavitha Karuppusamy Duraiswamy Sakthivel Karthikeyan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2015年第6期1255-1257,共3页
Dear Sir,Iam Dr.Kavitha S,from the Department of Electronics and Communication Engineering,Nandha Engineering College,Erode,Tamil Nadu,India.I write to present the detection of glaucoma using extreme learning machine(... Dear Sir,Iam Dr.Kavitha S,from the Department of Electronics and Communication Engineering,Nandha Engineering College,Erode,Tamil Nadu,India.I write to present the detection of glaucoma using extreme learning machine(ELM)and fractal feature analysis.Glaucoma is the second most frequent cause of permanent blindness in industrial 展开更多
关键词 In Assessment of glaucoma using extreme learning machine and fractal feature analysis elm FIGURE
下载PDF
Misfire identification of automobile engines based on wavelet packet and extreme learning machine
11
作者 GAO Yuan LI Yi-bo 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2017年第4期384-395,共12页
Due to non-stationary characteristics of the vibration signal acquired from cylinder head,a misfire fault diagnosis system of automobile engines based on correlation coefficient gained by wavelet packet and extreme le... Due to non-stationary characteristics of the vibration signal acquired from cylinder head,a misfire fault diagnosis system of automobile engines based on correlation coefficient gained by wavelet packet and extreme learning machine(ELM)is proposed.Firstly,the original signal is decomposed by wavelet packet,and correlation coefficients between the reconstructed signal of each sub-band and the original signal as well as the energy entropy of each sample are obtained.Then,the eigenvectors established by the correlation coefficients method and the energy entropy method fused with kurtosis are inputted to the four kinds of classifiers including BP neural network,KNN classifier,support vector machine and ELM respectively for training and testing.Experimental results show that the method proposed in this paper can effectively reflect the differences that the fault produces and identify the single-cylinder misfire accurately,which has the advantages of higher accuracy and shorter training time. 展开更多
关键词 automobile engine wavelet packet correlation coefficient extreme learning machine (elm) misfire fault identification
下载PDF
Aeroengine Performance Parameter Prediction Based on Improved Regularization Extreme Learning Machine
12
作者 CAO Yuyuan ZHANG Bowen WANG Huawei 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第4期545-559,共15页
Performance parameter prediction technology is the core research content of aeroengine health management,and more and more machine learning algorithms have been applied in the field.Regularized extreme learning machin... Performance parameter prediction technology is the core research content of aeroengine health management,and more and more machine learning algorithms have been applied in the field.Regularized extreme learning machine(RELM)is one of them.However,the regularization parameter determination of RELM consumes computational resources,which makes it unsuitable in the field of aeroengine performance parameter prediction with a large amount of data.This paper uses the forward and backward segmentation(FBS)algorithms to improve the RELM performance,and introduces an adaptive step size determination method and an improved solution mechanism to obtain a new machine learning algorithm.While maintaining good generalization,the new algorithm is not sensitive to regularization parameters,which greatly saves computing resources.The experimental results on the public data sets prove the above conclusions.Finally,the new algorithm is applied to the prediction of aero-engine performance parameters,and the excellent prediction performance is achieved. 展开更多
关键词 extreme learning machine AEROENGINE performance parameter prediction forward and backward segmentation algorithms
下载PDF
Robust signal recognition algorithm based on machine learning in heterogeneous networks
13
作者 Xiaokai Liu Rong Li +1 位作者 Chenglin Zhao Pengbiao Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期333-342,共10页
There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR)... There are various heterogeneous networks for terminals to deliver a better quality of service. Signal system recognition and classification contribute a lot to the process. However, in low signal to noise ratio(SNR) circumstances or under time-varying multipath channels, the majority of the existing algorithms for signal recognition are already facing limitations. In this series, we present a robust signal recognition method based upon the original and latest updated version of the extreme learning machine(ELM) to help users to switch between networks. The ELM utilizes signal characteristics to distinguish systems. The superiority of this algorithm lies in the random choices of hidden nodes and in the fact that it determines the output weights analytically, which result in lower complexity. Theoretically, the algorithm tends to offer a good generalization performance at an extremely fast speed of learning. Moreover, we implement the GSM/WCDMA/LTE models in the Matlab environment by using the Simulink tools. The simulations reveal that the signals can be recognized successfully to achieve a 95% accuracy in a low SNR(0 dB) environment in the time-varying multipath Rayleigh fading channel. 展开更多
关键词 heterogeneous networks automatic signal classification extreme learning machine(elm) features-extracted Rayleigh fading channel
下载PDF
A Transfer Learning-Enabled Optimized Extreme Deep Learning Paradigm for Diagnosis of COVID-19 被引量:1
14
作者 Ahmed Reda Sherif Barakat Amira Rezk 《Computers, Materials & Continua》 SCIE EI 2022年第1期1381-1399,共19页
Many respiratory infections around the world have been caused by coronaviruses.COVID-19 is one of the most serious coronaviruses due to its rapid spread between people and the lowest survival rate.There is a high need... Many respiratory infections around the world have been caused by coronaviruses.COVID-19 is one of the most serious coronaviruses due to its rapid spread between people and the lowest survival rate.There is a high need for computer-assisted diagnostics(CAD)in the area of artificial intelligence to help doctors and radiologists identify COVID-19 patients in cloud systems.Machine learning(ML)has been used to examine chest X-ray frames.In this paper,a new transfer learning-based optimized extreme deep learning paradigm is proposed to identify the chest X-ray picture into three classes,a pneumonia patient,a COVID-19 patient,or a normal person.First,three different pre-trainedConvolutionalNeuralNetwork(CNN)models(resnet18,resnet25,densenet201)are employed for deep feature extraction.Second,each feature vector is passed through the binary Butterfly optimization algorithm(bBOA)to reduce the redundant features and extract the most representative ones,and enhance the performance of the CNN models.These selective features are then passed to an improved Extreme learning machine(ELM)using a BOA to classify the chest X-ray images.The proposed paradigm achieves a 99.48%accuracy in detecting covid-19 cases. 展开更多
关键词 Butterfly optimization algorithm(BOA) covid-19 chest X-ray images convolutional neural network(CNN) extreme learning machine(elm) feature selection
下载PDF
Extreme learning with chemical reaction optimization for stock volatility prediction 被引量:2
15
作者 Sarat Chandra Nayak Bijan Bihari Misra 《Financial Innovation》 2020年第1期290-312,共23页
Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selecti... Extreme learning machine(ELM)allows for fast learning and better generalization performance than conventional gradient-based learning.However,the possible inclusion of non-optimal weight and bias due to random selection and the need for more hidden neurons adversely influence network usability.Further,choosing the optimal number of hidden nodes for a network usually requires intensive human intervention,which may lead to an ill-conditioned situation.In this context,chemical reaction optimization(CRO)is a meta-heuristic paradigm with increased success in a large number of application areas.It is characterized by faster convergence capability and requires fewer tunable parameters.This study develops a learning framework combining the advantages of ELM and CRO,called extreme learning with chemical reaction optimization(ELCRO).ELCRO simultaneously optimizes the weight and bias vector and number of hidden neurons of a single layer feed-forward neural network without compromising prediction accuracy.We evaluate its performance by predicting the daily volatility and closing prices of BSE indices.Additionally,its performance is compared with three other similarly developed models—ELM based on particle swarm optimization,genetic algorithm,and gradient descent—and find the performance of the proposed algorithm superior.Wilcoxon signed-rank and Diebold–Mariano tests are then conducted to verify the statistical significance of the proposed model.Hence,this model can be used as a promising tool for financial forecasting. 展开更多
关键词 extreme learning machine Single layer feed-forward network Artificial chemical reaction optimization Stock volatility prediction Financial time series forecasting Artificial neural network Genetic algorithm Particle swarm optimization
下载PDF
Modified Dragonfly Optimization with Machine Learning Based Arabic Text Recognition
16
作者 Badriyya BAl-onazi Najm Alotaibi +5 位作者 Jaber SAlzahrani Hussain Alshahrani Mohamed Ahmed Elfaki Radwa Marzouk Mahmoud Othman Abdelwahed Motwakel 《Computers, Materials & Continua》 SCIE EI 2023年第8期1537-1554,共18页
Text classification or categorization is the procedure of automatically tagging a textual document with most related labels or classes.When the number of labels is limited to one,the task becomes single-label text cat... Text classification or categorization is the procedure of automatically tagging a textual document with most related labels or classes.When the number of labels is limited to one,the task becomes single-label text categorization.The Arabic texts include unstructured information also like English texts,and that is understandable for machine learning(ML)techniques,the text is changed and demonstrated by numerical value.In recent times,the dominant method for natural language processing(NLP)tasks is recurrent neural network(RNN),in general,long short termmemory(LSTM)and convolutional neural network(CNN).Deep learning(DL)models are currently presented for deriving a massive amount of text deep features to an optimum performance from distinct domains such as text detection,medical image analysis,and so on.This paper introduces aModified Dragonfly Optimization with Extreme Learning Machine for Text Representation and Recognition(MDFO-EMTRR)model onArabicCorpus.The presentedMDFO-EMTRR technique mainly concentrates on the recognition and classification of the Arabic text.To achieve this,theMDFO-EMTRRtechnique encompasses data pre-processing to transform the input data into compatible format.Next,the ELM model is utilized for the representation and recognition of the Arabic text.At last,the MDFO algorithm was exploited for optimal tuning of the parameters related to the ELM method and thereby accomplish enhanced classifier results.The experimental result analysis of the MDFO-EMTRR system was performed on benchmark datasets and attained maximum accuracy of 99.74%. 展开更多
关键词 Arabic corpus dragonfly algorithm machine learning text mining extreme learning machine
下载PDF
Intelligent Machine Learning with Metaheuristics Based Sentiment Analysis and Classification
17
作者 R.Bhaskaran S.Saravanan +4 位作者 M.Kavitha C.Jeyalakshmi Seifedine Kadry Hafiz Tayyab Rauf Reem Alkhammash 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期235-247,共13页
Sentiment Analysis(SA)is one of the subfields in Natural Language Processing(NLP)which focuses on identification and extraction of opinions that exist in the text provided across reviews,social media,blogs,news,and so... Sentiment Analysis(SA)is one of the subfields in Natural Language Processing(NLP)which focuses on identification and extraction of opinions that exist in the text provided across reviews,social media,blogs,news,and so on.SA has the ability to handle the drastically-increasing unstructured text by transform-ing them into structured data with the help of NLP and open source tools.The current research work designs a novel Modified Red Deer Algorithm(MRDA)Extreme Learning Machine Sparse Autoencoder(ELMSAE)model for SA and classification.The proposed MRDA-ELMSAE technique initially performs pre-processing to transform the data into a compatible format.Moreover,TF-IDF vec-torizer is employed in the extraction of features while ELMSAE model is applied in the classification of sentiments.Furthermore,optimal parameter tuning is done for ELMSAE model using MRDA technique.A wide range of simulation analyses was carried out and results from comparative analysis establish the enhanced effi-ciency of MRDA-ELMSAE technique against other recent techniques. 展开更多
关键词 Sentiment analysis data classification machine learning red deer algorithm extreme learning machine natural language processing
下载PDF
Deep kernel extreme learning machine classifier based on the improved sparrow search algorithm
18
作者 Zhao Guangyuan Lei Yu 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2024年第3期15-29,共15页
In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classificat... In the classification problem,deep kernel extreme learning machine(DKELM)has the characteristics of efficient processing and superior performance,but its parameters optimization is difficult.To improve the classification accuracy of DKELM,a DKELM algorithm optimized by the improved sparrow search algorithm(ISSA),named as ISSA-DKELM,is proposed in this paper.Aiming at the parameter selection problem of DKELM,the DKELM classifier is constructed by using the optimal parameters obtained by ISSA optimization.In order to make up for the shortcomings of the basic sparrow search algorithm(SSA),the chaotic transformation is first applied to initialize the sparrow position.Then,the position of the discoverer sparrow population is dynamically adjusted.A learning operator in the teaching-learning-based algorithm is fused to improve the position update operation of the joiners.Finally,the Gaussian mutation strategy is added in the later iteration of the algorithm to make the sparrow jump out of local optimum.The experimental results show that the proposed DKELM classifier is feasible and effective,and compared with other classification algorithms,the proposed DKELM algorithm aciheves better test accuracy. 展开更多
关键词 deep kernel extreme learning machine(DKelm) improved sparrow search algorithm(ISSA) CLASSIFIER parameters optimization
原文传递
State of health estimation for lithium-ion battery based on particle swarm optimization algorithm and extreme learning machine
19
作者 Kui Chen Jiali Li +5 位作者 Kai Liu Changshan Bai Jiamin Zhu Guoqiang Gao Guangning Wu Salah Laghrouche 《Green Energy and Intelligent Transportation》 2024年第1期46-54,共9页
Lithium-ion battery State of Health(SOH)estimation is an essential issue in battery management systems.In order to better estimate battery SOH,Extreme Learning Machine(ELM)is used to establish a model to estimate lith... Lithium-ion battery State of Health(SOH)estimation is an essential issue in battery management systems.In order to better estimate battery SOH,Extreme Learning Machine(ELM)is used to establish a model to estimate lithium-ion battery SOH.The Swarm Optimization algorithm(PSO)is used to automatically adjust and optimize the parameters of ELM to improve estimation accuracy.Firstly,collect cyclic aging data of the battery and extract five characteristic quantities related to battery capacity from the battery charging curve and increment capacity curve.Use Grey Relation Analysis(GRA)method to analyze the correlation between battery capacity and five characteristic quantities.Then,an ELM is used to build the capacity estimation model of the lithium-ion battery based on five characteristics,and a PSO is introduced to optimize the parameters of the capacity estimation model.The proposed method is validated by the degradation experiment of the lithium-ion battery under different conditions.The results show that the battery capacity estimation model based on ELM and PSO has better accuracy and stability in capacity estimation,and the average absolute percentage error is less than 1%. 展开更多
关键词 Lithium-ion battery State of health estimation Grey relation analysis method Particle swarm optimization algorithm extreme learning machine
原文传递
Dynamic plugging regulating strategy of pipeline robot based on reinforcement learning
20
作者 Xing-Yuan Miao Hong Zhao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期597-608,共12页
Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the p... Pipeline isolation plugging robot (PIPR) is an important tool in pipeline maintenance operation. During the plugging process, the violent vibration will occur by the flow field, which can cause serious damage to the pipeline and PIPR. In this paper, we propose a dynamic regulating strategy to reduce the plugging-induced vibration by regulating the spoiler angle and plugging velocity. Firstly, the dynamic plugging simulation and experiment are performed to study the flow field changes during dynamic plugging. And the pressure difference is proposed to evaluate the degree of flow field vibration. Secondly, the mathematical models of pressure difference with plugging states and spoiler angles are established based on the extreme learning machine (ELM) optimized by improved sparrow search algorithm (ISSA). Finally, a modified Q-learning algorithm based on simulated annealing is applied to determine the optimal strategy for the spoiler angle and plugging velocity in real time. The results show that the proposed method can reduce the plugging-induced vibration by 19.9% and 32.7% on average, compared with single-regulating methods. This study can effectively ensure the stability of the plugging process. 展开更多
关键词 Pipeline isolation plugging robot Plugging-induced vibration Dynamic regulating strategy extreme learning machine Improved sparrow search algorithm Modified Q-learning algorithm
下载PDF
上一页 1 2 70 下一页 到第
使用帮助 返回顶部