This paper presents a new topology to implement Class F power amplifier for eliminating the on-resistance (R_(ON))effect.The time-domain and frequency-domain voltage and current waveforms for Class F amplifier are ana...This paper presents a new topology to implement Class F power amplifier for eliminating the on-resistance (R_(ON))effect.The time-domain and frequency-domain voltage and current waveforms for Class F amplifier are ana- lyzed using Fourier series analysis method.Considering the on-resistance effect,the formulas of the efficiency,output power,dc power dissipation,and fundamental load impedance are given from ideal current and voltage waveforms.For experimental verification,we designed and implemented a Class F power amplifier,which operates at 850 MHz using MGaAs/GaAs Heterostructure FET(HFET)device,and analyzed the measurement results.Test results show that the maximum PAE of 67% can be achieved at 28 dBm output power level.展开更多
Fly ash particles are usually spherical and based on their chemical composition;they are categorized into two classes: C and F. This study compares the microstructural, mechanical and thermal properties of extruded ri...Fly ash particles are usually spherical and based on their chemical composition;they are categorized into two classes: C and F. This study compares the microstructural, mechanical and thermal properties of extruded rigid PVC foam composites reinforced with class C and class F fly ash. The mechanical properties: such as tensile and flexural strength of composites containing class C fly ash were superior to the composites containing class F fly ash particles. Composites containing 6 phr class C fly ash showed a 24% improvement in the tensile strength in comparison to a mere 0.5% increase in composites reinforced with class F fly ash. Similarly, the addition of 6 phr of class F fly ash to the PVC foam matrix resulted in a 5.74% decrease in the flexural strength, while incorporating the same amount of class C fly ash led to a 95% increase in flexural strength. The impact strength of the composites decreased as the amount of either type of fly ash increased in the composites indicating that fly ash particles improve the rigidity of the PVC foam composites. No significant changes were observed in the thermal properties of the composites containing either type of fly ash particles. However, the thermo-mechanical properties measured by DMA indicated a steep increase in the viscoelastic properties of composites reinforced with class C flyash. The microstructural properties studied by Scanning Electron Microscopy (SEM) confirmed that fly ash particles were mechanically interlocked in the PVC matrix with good interfacial interaction with the matrix. However, particle agglomeration and debonding was observed in composites reinforced with higher amounts of fly ash.展开更多
The fundamental operating principle of a Class F power amplifier and the factors aiding or affecting Class F performance were explicated previously. A Class F power amplifier design which satisfies WCDMA specification...The fundamental operating principle of a Class F power amplifier and the factors aiding or affecting Class F performance were explicated previously. A Class F power amplifier design which satisfies WCDMA specifications is explained in this paper. The Class F amplifier was designed by employing Motorola’s LDMOS (Laterally Diffused Metal Oxide Semiconductor) transistor models and we simulated its performance by means of ADS. A variety of procedures were applied in the process of designing Class F amplifier, namely, DC simulation, bias point selection, source-pull and load-pull characterization, input and output matching circuit design and the design of suitable harmonic traps, which are explained here.展开更多
The appearance of third-generation semiconductors represented by gallium nitride (GaN) material greatly improves the output power of a power amplifier (PA), but the efficiency of the PA needs to be further improve...The appearance of third-generation semiconductors represented by gallium nitride (GaN) material greatly improves the output power of a power amplifier (PA), but the efficiency of the PA needs to be further improved. The Class-F PA reduces the overlap of drain voltage and current by tuning harmonic impedance so that high efficiency is achieved. This paper begins with the principle of class-F PA, regards the third harmonic voltage as an independent variable, analyzes the influence of the third harmonic on fundamental, and points out how drain efficiency and output power vary with the third harmonic voltage with an I-V knee effect. Finally, the best third harmonic impedance is found mathematically. We compare our results with the Loadpull technique in advanced design system environment and conclude that an optimized third harmonic impedance is open in an ideal case, while it is not at an open point with the I-V knee effect, and the drain efficiency with optimized third harmonic impedance is 4% higher than that with the third harmonic open.展开更多
This paper proposed the high-frequency, multi-harmonic-controlled, Class-F power amplifier (PA) implemented with 0.5 μm GaN Hetrojunction Electron Mobility Transistor (HEMT). For PA design at high frequencies, parasi...This paper proposed the high-frequency, multi-harmonic-controlled, Class-F power amplifier (PA) implemented with 0.5 μm GaN Hetrojunction Electron Mobility Transistor (HEMT). For PA design at high frequencies, parasitics of a transistor significantly increase the difficulty of harmonic manipulation, compared to low-frequency cases. To overcome this issue, we propose a novel design methodology based on a band-reject, low-pass, output matching network, which is realized with passive components. This network provides optimal fundamental impedance and allows harmonic control up to the third order to enable an efficient Class-F behavior. The implemented PA exhibits performance at 2.5 GHz with a 50% PAE, 14 dB gain, and 10 W output power.展开更多
Geopolymer concrete emerges as a promising avenue for sustainable development and offers an effective solution to environmental problems.Its attributes as a non-toxic,low-carbon,and economical substitute for conventio...Geopolymer concrete emerges as a promising avenue for sustainable development and offers an effective solution to environmental problems.Its attributes as a non-toxic,low-carbon,and economical substitute for conventional cement concrete,coupled with its elevated compressive strength and reduced shrinkage properties,position it as a pivotal material for diverse applications spanning from architectural structures to transportation infrastructure.In this context,this study sets out the task of using machine learning(ML)algorithms to increase the accuracy and interpretability of predicting the compressive strength of geopolymer concrete in the civil engineering field.To achieve this goal,a new approach using convolutional neural networks(CNNs)has been adopted.This study focuses on creating a comprehensive dataset consisting of compositional and strength parameters of 162 geopolymer concrete mixes,all containing Class F fly ash.The selection of optimal input parameters is guided by two distinct criteria.The first criterion leverages insights garnered from previous research on the influence of individual features on compressive strength.The second criterion scrutinizes the impact of these features within the model’s predictive framework.Key to enhancing the CNN model’s performance is the meticulous determination of the optimal hyperparameters.Through a systematic trial-and-error process,the study ascertains the ideal number of epochs for data division and the optimal value of k for k-fold cross-validation—a technique vital to the model’s robustness.The model’s predictive prowess is rigorously assessed via a suite of performance metrics and comprehensive score analyses.Furthermore,the model’s adaptability is gauged by integrating a secondary dataset into its predictive framework,facilitating a comparative evaluation against conventional prediction methods.To unravel the intricacies of the CNN model’s learning trajectory,a loss plot is deployed to elucidate its learning rate.The study culminates in compelling findings that underscore the CNN model’s accurate prediction of geopolymer concrete compressive strength.To maximize the dataset’s potential,the application of bivariate plots unveils nuanced trends and interactions among variables,fortifying the consistency with earlier research.Evidenced by promising prediction accuracy,the study’s outcomes hold significant promise in guiding the development of innovative geopolymer concrete formulations,thereby reinforcing its role as an eco-conscious and robust construction material.The findings prove that the CNN model accurately estimated geopolymer concrete’s compressive strength.The results show that the prediction accuracy is promising and can be used for the development of new geopolymer concrete mixes.The outcomes not only underscore the significance of leveraging technology for sustainable construction practices but also pave the way for innovation and efficiency in the field of civil engineering.展开更多
An X-band inverse class-F power amplifier is realized by a 1-mm Al Ga N/Ga N high electron mobility transistor(HEMT).The intrinsic and parasitic components inside the transistor,especially output capacitor Cds,influ...An X-band inverse class-F power amplifier is realized by a 1-mm Al Ga N/Ga N high electron mobility transistor(HEMT).The intrinsic and parasitic components inside the transistor,especially output capacitor Cds,influence the harmonic impedance heavily at the X-band,so compensation design is used for meeting the harmonic condition of inverse class-F on the current source plane.Experiment results show that,in the continuous-wave mode,the power amplifier achieves 61.7% power added efficiency(PAE),which is 16.3% higher than the class-AB power amplifier realized by the same kind of HEMT.To the best of our knowledge,this is the first inverse class-F Ga N internally-matched power amplifier,and the PAE is quite high at the X-band.展开更多
传统的F类和逆F类功率放大器的带宽不宽,且对于功放输出信号的谐波控制比较严格。在连续类功放理论的基础上,设计了一款在工作带宽内连续F类和连续逆F类模式转换的功率放大器。设计的功放采用了Cree公司的CGH40010F GaN HEMT晶体管。通...传统的F类和逆F类功率放大器的带宽不宽,且对于功放输出信号的谐波控制比较严格。在连续类功放理论的基础上,设计了一款在工作带宽内连续F类和连续逆F类模式转换的功率放大器。设计的功放采用了Cree公司的CGH40010F GaN HEMT晶体管。通过调整功放管输出端的谐波控制网络,控制谐波阻抗在Smith圆图中位置分布,从而在带宽内同时实现连续F类和连续逆F类的工作模式。制作了测试板,结果表明在2.4~4.2 GHz的带宽内,增益在11 dB以上,漏极效率为55%~82%,输出功率在39.5~41.9 dBm。采用了10 MHz的LTE单载波信号进行功放的数字预失真测试,功放的输出ACPR改善了6 dB以上。展开更多
逆F类功放在接近饱和区工作时效率很高,将其与Doherty功放结构相结合,可以实现一种在大功率回退的情况下仍然具有很高效率的射频功率放大器。本文设计了一款基于Ga N HEMT晶体管的高效率的逆F类Doherty功率放大器,工作频带为910MHz^950...逆F类功放在接近饱和区工作时效率很高,将其与Doherty功放结构相结合,可以实现一种在大功率回退的情况下仍然具有很高效率的射频功率放大器。本文设计了一款基于Ga N HEMT晶体管的高效率的逆F类Doherty功率放大器,工作频带为910MHz^950MHz。单音信号测试结果显示,在930MHz处,功放回退7.5d B后漏极效率仍高达64.2%。使用3载波WCDMA信号作为测试信号,利用数字预失真技术进行线性化后,功放输出信号的上下边带邻信道功率比(ACPR)分别为-35.39d Bc和-35.9d Bc。展开更多
文摘This paper presents a new topology to implement Class F power amplifier for eliminating the on-resistance (R_(ON))effect.The time-domain and frequency-domain voltage and current waveforms for Class F amplifier are ana- lyzed using Fourier series analysis method.Considering the on-resistance effect,the formulas of the efficiency,output power,dc power dissipation,and fundamental load impedance are given from ideal current and voltage waveforms.For experimental verification,we designed and implemented a Class F power amplifier,which operates at 850 MHz using MGaAs/GaAs Heterostructure FET(HFET)device,and analyzed the measurement results.Test results show that the maximum PAE of 67% can be achieved at 28 dBm output power level.
文摘Fly ash particles are usually spherical and based on their chemical composition;they are categorized into two classes: C and F. This study compares the microstructural, mechanical and thermal properties of extruded rigid PVC foam composites reinforced with class C and class F fly ash. The mechanical properties: such as tensile and flexural strength of composites containing class C fly ash were superior to the composites containing class F fly ash particles. Composites containing 6 phr class C fly ash showed a 24% improvement in the tensile strength in comparison to a mere 0.5% increase in composites reinforced with class F fly ash. Similarly, the addition of 6 phr of class F fly ash to the PVC foam matrix resulted in a 5.74% decrease in the flexural strength, while incorporating the same amount of class C fly ash led to a 95% increase in flexural strength. The impact strength of the composites decreased as the amount of either type of fly ash increased in the composites indicating that fly ash particles improve the rigidity of the PVC foam composites. No significant changes were observed in the thermal properties of the composites containing either type of fly ash particles. However, the thermo-mechanical properties measured by DMA indicated a steep increase in the viscoelastic properties of composites reinforced with class C flyash. The microstructural properties studied by Scanning Electron Microscopy (SEM) confirmed that fly ash particles were mechanically interlocked in the PVC matrix with good interfacial interaction with the matrix. However, particle agglomeration and debonding was observed in composites reinforced with higher amounts of fly ash.
文摘The fundamental operating principle of a Class F power amplifier and the factors aiding or affecting Class F performance were explicated previously. A Class F power amplifier design which satisfies WCDMA specifications is explained in this paper. The Class F amplifier was designed by employing Motorola’s LDMOS (Laterally Diffused Metal Oxide Semiconductor) transistor models and we simulated its performance by means of ADS. A variety of procedures were applied in the process of designing Class F amplifier, namely, DC simulation, bias point selection, source-pull and load-pull characterization, input and output matching circuit design and the design of suitable harmonic traps, which are explained here.
文摘The appearance of third-generation semiconductors represented by gallium nitride (GaN) material greatly improves the output power of a power amplifier (PA), but the efficiency of the PA needs to be further improved. The Class-F PA reduces the overlap of drain voltage and current by tuning harmonic impedance so that high efficiency is achieved. This paper begins with the principle of class-F PA, regards the third harmonic voltage as an independent variable, analyzes the influence of the third harmonic on fundamental, and points out how drain efficiency and output power vary with the third harmonic voltage with an I-V knee effect. Finally, the best third harmonic impedance is found mathematically. We compare our results with the Loadpull technique in advanced design system environment and conclude that an optimized third harmonic impedance is open in an ideal case, while it is not at an open point with the I-V knee effect, and the drain efficiency with optimized third harmonic impedance is 4% higher than that with the third harmonic open.
文摘This paper proposed the high-frequency, multi-harmonic-controlled, Class-F power amplifier (PA) implemented with 0.5 μm GaN Hetrojunction Electron Mobility Transistor (HEMT). For PA design at high frequencies, parasitics of a transistor significantly increase the difficulty of harmonic manipulation, compared to low-frequency cases. To overcome this issue, we propose a novel design methodology based on a band-reject, low-pass, output matching network, which is realized with passive components. This network provides optimal fundamental impedance and allows harmonic control up to the third order to enable an efficient Class-F behavior. The implemented PA exhibits performance at 2.5 GHz with a 50% PAE, 14 dB gain, and 10 W output power.
基金funded by the Researchers Supporting Program at King Saud University(RSPD2023R809).
文摘Geopolymer concrete emerges as a promising avenue for sustainable development and offers an effective solution to environmental problems.Its attributes as a non-toxic,low-carbon,and economical substitute for conventional cement concrete,coupled with its elevated compressive strength and reduced shrinkage properties,position it as a pivotal material for diverse applications spanning from architectural structures to transportation infrastructure.In this context,this study sets out the task of using machine learning(ML)algorithms to increase the accuracy and interpretability of predicting the compressive strength of geopolymer concrete in the civil engineering field.To achieve this goal,a new approach using convolutional neural networks(CNNs)has been adopted.This study focuses on creating a comprehensive dataset consisting of compositional and strength parameters of 162 geopolymer concrete mixes,all containing Class F fly ash.The selection of optimal input parameters is guided by two distinct criteria.The first criterion leverages insights garnered from previous research on the influence of individual features on compressive strength.The second criterion scrutinizes the impact of these features within the model’s predictive framework.Key to enhancing the CNN model’s performance is the meticulous determination of the optimal hyperparameters.Through a systematic trial-and-error process,the study ascertains the ideal number of epochs for data division and the optimal value of k for k-fold cross-validation—a technique vital to the model’s robustness.The model’s predictive prowess is rigorously assessed via a suite of performance metrics and comprehensive score analyses.Furthermore,the model’s adaptability is gauged by integrating a secondary dataset into its predictive framework,facilitating a comparative evaluation against conventional prediction methods.To unravel the intricacies of the CNN model’s learning trajectory,a loss plot is deployed to elucidate its learning rate.The study culminates in compelling findings that underscore the CNN model’s accurate prediction of geopolymer concrete compressive strength.To maximize the dataset’s potential,the application of bivariate plots unveils nuanced trends and interactions among variables,fortifying the consistency with earlier research.Evidenced by promising prediction accuracy,the study’s outcomes hold significant promise in guiding the development of innovative geopolymer concrete formulations,thereby reinforcing its role as an eco-conscious and robust construction material.The findings prove that the CNN model accurately estimated geopolymer concrete’s compressive strength.The results show that the prediction accuracy is promising and can be used for the development of new geopolymer concrete mixes.The outcomes not only underscore the significance of leveraging technology for sustainable construction practices but also pave the way for innovation and efficiency in the field of civil engineering.
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2015AA016801)
文摘An X-band inverse class-F power amplifier is realized by a 1-mm Al Ga N/Ga N high electron mobility transistor(HEMT).The intrinsic and parasitic components inside the transistor,especially output capacitor Cds,influence the harmonic impedance heavily at the X-band,so compensation design is used for meeting the harmonic condition of inverse class-F on the current source plane.Experiment results show that,in the continuous-wave mode,the power amplifier achieves 61.7% power added efficiency(PAE),which is 16.3% higher than the class-AB power amplifier realized by the same kind of HEMT.To the best of our knowledge,this is the first inverse class-F Ga N internally-matched power amplifier,and the PAE is quite high at the X-band.