期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hardness Genetic Analysis of Pink Hard-fruit Tomato
1
作者 Qingzhen YIN Liyong ZHANG +3 位作者 Guohua WANG Weiping YIN Lijuan QIE Fujiang ZHAO 《Agricultural Science & Technology》 CAS 2017年第1期35-40,共6页
Hardness genetic laws of pink hard-fruit tomato were studied for breeding new varieties of pink hard-fruit tomato. The change of hardness degree and heredi- tary characters of tomato were studied using the texture ana... Hardness genetic laws of pink hard-fruit tomato were studied for breeding new varieties of pink hard-fruit tomato. The change of hardness degree and heredi- tary characters of tomato were studied using the texture analyzer, with female parents P27, male parents P31 and tomato F1 combination 15# as the test materials. The result showed that transverse hardness was the lowest, followed by longitudinal hardness, and the hardness of fruit shoulder was the highest. The average hardness at green fruit stage was higher, the hardness at turning-color period and red ripe stage decreased significantly. The average hardness of P27, P31, F1 combination 15# at red ripe fruit was 13.27, 10.88, 12.28 N, respectively. The hardness at red fruit stage and green fruit stage had significantly positive correlation. Fruit shape index of F1 combinations 15#at red ripe stage was 0.87. The fruit shape was round with 5-6 locules. The pericarp thickness was 0.7-0.8 cm. The single fruit weight was 258 g. It was the ideal bred variety for pink hard-tomato fruit. There was no necessary connection among fruit hardness and fruit size, pericarp thickness, ventricle numbers, single fruit weight. Fruit shape index could be used as indirect selection index of the hardness of tomato. 展开更多
关键词 Tomato f1 combination female parents Male parents HARDNESS Texture analyzer HEREDITY
下载PDF
Thermodynamic Performance Analysis of E/F/H-Class Gas Turbine Combined Cycle with Exhaust Gas Recirculation and Inlet/Variable Guide Vane Adjustment under Part-Load Conditions
2
作者 LI Keying CHI Jinling +1 位作者 WANG Bo ZHANG Shijie 《Journal of Thermal Science》 SCIE EI CSCD 2024年第1期348-367,共20页
Exhaust gas recirculation control(EGRC),an inlet air heating technology,can be utilized in combination with inlet/variable guide vane control(IGV/VGVC) and fuel flow control(FFC) to regulate the load,thereby effective... Exhaust gas recirculation control(EGRC),an inlet air heating technology,can be utilized in combination with inlet/variable guide vane control(IGV/VGVC) and fuel flow control(FFC) to regulate the load,thereby effectively improving the part-load(i.e.,off-design) performance of the gas turbine combined cycle(GTCC).In this study,the E-,F-,and H-Class EGR-GTCC design and off-design system models were established and validated to perform a comparative analysis of the part-load performance under the EGR-IGV-FFC and conventional IGV-FFC strategies in the E/F/H-Class GTCC.Results show that EGR-IGV-FFC has considerable potential for the part-load performance enhancement and can show a higher combined cycle efficiency than IGV-FFC in the E-,F-,and H-Class GTCCs.However,the part-load performance improvement in the corresponding GTCC was weakened for the higher class of the gas turbine because of the narrower load range of EGR action and the deterioration of the gas turbine performance.Furthermore,EGR-IGV-FFC was inferior to IGV-FFC in improving the performance at loads below 50% for the H-Class GTCC.The results obtained in this paper could help guide the application of EGR-IGV-FFC to enhance the part-load performance of various classes of GTCC systems. 展开更多
关键词 E/f/H-Class gas turbine combined cycle performance improvement part-load conditions exhaust gas recirculation inlet/variable guide vane
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部