Nanog is a recently discovered homeodomain transcription factor that sustains the pluripotency of embryonic stem (ES) cells and blocks their differentiation into endoderm. The murine F9 embryonal carcinoma cell line...Nanog is a recently discovered homeodomain transcription factor that sustains the pluripotency of embryonic stem (ES) cells and blocks their differentiation into endoderm. The murine F9 embryonal carcinoma cell line is a well-documented model system for endoderm cell lineage differentiation. Here, we examined the function of Nanog in F9 cell endoderm differentiation. Over-expression of Nanog returns the F9 cells to the early status of ES cells and represses the differentiation of primitive endoderm and parietal endoderm in F9 cells, whereas it has no effect on the differentiation of visceral endoderm. In contrast, the expression of C-terminal domain-truncated Nanog spontaneously promotes endoderm differentiation in F9 cells. These data suggest that Nanog is required to sustain the proper undifferentiated status of F9 cells, and the C-terminal domain of Nanog transduces the most effects in repressing primitive endoderm and parietal endoderm differentiation in F9 cells.展开更多
A new numerical approach is presented to compute the large deformations of shell-type structures made of the Saint Venant-Kirchhoff and Neo-Hookean materials based on the seven-parameter shell theory.A work conjugate ...A new numerical approach is presented to compute the large deformations of shell-type structures made of the Saint Venant-Kirchhoff and Neo-Hookean materials based on the seven-parameter shell theory.A work conjugate pair of the first Piola Kirchhoff stress tensor and deformation gradient tensor is considered for the stress and strain measures in the paper.Through introducing the displacement vector,the deformation gradient,and the stress tensor in the Cartesian coordinate system and by means of the chain rule for taking derivative of tensors,the difficulties in using the curvilinear coordinate system are bypassed.The variational differential quadrature(VDQ)method as a pointwise numerical method is also used to discretize the weak form of the governing equations.Being locking-free,the simple implementation,computational efficiency,and fast convergence rate are the main features of the proposed numerical approach.Some well-known benchmark problems are solved to assess the approach.The results indicate that it is capable of addressing the large deformation problems of elastic and hyperelastic shell-type structures efficiently.展开更多
In this paper the inequality of Lemma 1 of [1] is extended. By means of our inequality and the method of Lyapunov function we study the stability of two kinds of large scale differential systems with time lag and the ...In this paper the inequality of Lemma 1 of [1] is extended. By means of our inequality and the method of Lyapunov function we study the stability of two kinds of large scale differential systems with time lag and the stability of a higher-order differential equation with time lag. The sufficient conditions for the stability (S. ), the asymptotic stability (A. S. ), the uniformly asymptotic stability (U. A. S. ) and the exponential asymptotic stability (E. A. S. ) of the zero solutions of the systems are obtained respectively.展开更多
针对热带树种陆均松Dacrydium pierrei de Laubenfels分布在海南的12个天然种群进行取样,测定了叶绿体DNA(cpDNA)trnL-F非编码区序列。序列长度介于868—876 bp.显示出长度多态性。碱基组成A+T含量较高,百分比值为64.17%-64.95%。通过...针对热带树种陆均松Dacrydium pierrei de Laubenfels分布在海南的12个天然种群进行取样,测定了叶绿体DNA(cpDNA)trnL-F非编码区序列。序列长度介于868—876 bp.显示出长度多态性。碱基组成A+T含量较高,百分比值为64.17%-64.95%。通过统计简约算法共鉴定出30个单倍型。根据种群间分化度FST(=0.00)、基因流Nm(介于1.92—2.50)、AMOVA(24.17%的遗传变异发生在种群间,P>0.05)以及邻接树中单倍型的分支式样,发现海南的陆均松种群尚未发生遗传分化。另一方面,依统计简约算法构建的单倍型网图具“星状”特征,而且邻接树中多数单倍型合并于树的顶端。这些基因谱系结果提示海南陆均松种群在近期历史上发生过种群扩张。Tajima的D检验和错配分析结果也支持这种推测。结合地质和古孢粉学证据,认为残存于“避难所”的陆均松种群在全新世时,伴随全球气候转暖,在海南岛内可能实行了扩张。展开更多
以1,3-二氨丙基-1,1,3,3-四甲基二硅氧烷(DSX)和环氧氯丙烷(ECH)为原料,利用相转移催化剂,合成双酚F环氧树脂(BPFER)改性剂N,N,N′,N′-四缩水甘油基-1,3-二氨丙基-1,1,3,3-四甲基二硅氧烷(TG-siloxane),并用FTIR、13 C NMR谱图对其结...以1,3-二氨丙基-1,1,3,3-四甲基二硅氧烷(DSX)和环氧氯丙烷(ECH)为原料,利用相转移催化剂,合成双酚F环氧树脂(BPFER)改性剂N,N,N′,N′-四缩水甘油基-1,3-二氨丙基-1,1,3,3-四甲基二硅氧烷(TG-siloxane),并用FTIR、13 C NMR谱图对其结构进行了表征。对TG-siloxane改性BPFER/mXDA(间苯二甲胺)体系的固化动力学进行了研究。根据DSC曲线和Starink方程,得该体系表观固化活化能为51.52kJ.mol-1。用esták-Berggren模型求得不同升温速率下的表观因子、反应级数。动力学方程表明,升温速率对固化反应影响明显;所得方程用于预估反应进程时,与实测值吻合程度高。TG分析表明,TG-siloxane改性BPFER/mXDA体系固化物的耐热性能优于单纯BPFER/mXDA固化物。展开更多
文摘Nanog is a recently discovered homeodomain transcription factor that sustains the pluripotency of embryonic stem (ES) cells and blocks their differentiation into endoderm. The murine F9 embryonal carcinoma cell line is a well-documented model system for endoderm cell lineage differentiation. Here, we examined the function of Nanog in F9 cell endoderm differentiation. Over-expression of Nanog returns the F9 cells to the early status of ES cells and represses the differentiation of primitive endoderm and parietal endoderm in F9 cells, whereas it has no effect on the differentiation of visceral endoderm. In contrast, the expression of C-terminal domain-truncated Nanog spontaneously promotes endoderm differentiation in F9 cells. These data suggest that Nanog is required to sustain the proper undifferentiated status of F9 cells, and the C-terminal domain of Nanog transduces the most effects in repressing primitive endoderm and parietal endoderm differentiation in F9 cells.
文摘A new numerical approach is presented to compute the large deformations of shell-type structures made of the Saint Venant-Kirchhoff and Neo-Hookean materials based on the seven-parameter shell theory.A work conjugate pair of the first Piola Kirchhoff stress tensor and deformation gradient tensor is considered for the stress and strain measures in the paper.Through introducing the displacement vector,the deformation gradient,and the stress tensor in the Cartesian coordinate system and by means of the chain rule for taking derivative of tensors,the difficulties in using the curvilinear coordinate system are bypassed.The variational differential quadrature(VDQ)method as a pointwise numerical method is also used to discretize the weak form of the governing equations.Being locking-free,the simple implementation,computational efficiency,and fast convergence rate are the main features of the proposed numerical approach.Some well-known benchmark problems are solved to assess the approach.The results indicate that it is capable of addressing the large deformation problems of elastic and hyperelastic shell-type structures efficiently.
文摘In this paper the inequality of Lemma 1 of [1] is extended. By means of our inequality and the method of Lyapunov function we study the stability of two kinds of large scale differential systems with time lag and the stability of a higher-order differential equation with time lag. The sufficient conditions for the stability (S. ), the asymptotic stability (A. S. ), the uniformly asymptotic stability (U. A. S. ) and the exponential asymptotic stability (E. A. S. ) of the zero solutions of the systems are obtained respectively.
文摘针对热带树种陆均松Dacrydium pierrei de Laubenfels分布在海南的12个天然种群进行取样,测定了叶绿体DNA(cpDNA)trnL-F非编码区序列。序列长度介于868—876 bp.显示出长度多态性。碱基组成A+T含量较高,百分比值为64.17%-64.95%。通过统计简约算法共鉴定出30个单倍型。根据种群间分化度FST(=0.00)、基因流Nm(介于1.92—2.50)、AMOVA(24.17%的遗传变异发生在种群间,P>0.05)以及邻接树中单倍型的分支式样,发现海南的陆均松种群尚未发生遗传分化。另一方面,依统计简约算法构建的单倍型网图具“星状”特征,而且邻接树中多数单倍型合并于树的顶端。这些基因谱系结果提示海南陆均松种群在近期历史上发生过种群扩张。Tajima的D检验和错配分析结果也支持这种推测。结合地质和古孢粉学证据,认为残存于“避难所”的陆均松种群在全新世时,伴随全球气候转暖,在海南岛内可能实行了扩张。
文摘以1,3-二氨丙基-1,1,3,3-四甲基二硅氧烷(DSX)和环氧氯丙烷(ECH)为原料,利用相转移催化剂,合成双酚F环氧树脂(BPFER)改性剂N,N,N′,N′-四缩水甘油基-1,3-二氨丙基-1,1,3,3-四甲基二硅氧烷(TG-siloxane),并用FTIR、13 C NMR谱图对其结构进行了表征。对TG-siloxane改性BPFER/mXDA(间苯二甲胺)体系的固化动力学进行了研究。根据DSC曲线和Starink方程,得该体系表观固化活化能为51.52kJ.mol-1。用esták-Berggren模型求得不同升温速率下的表观因子、反应级数。动力学方程表明,升温速率对固化反应影响明显;所得方程用于预估反应进程时,与实测值吻合程度高。TG分析表明,TG-siloxane改性BPFER/mXDA体系固化物的耐热性能优于单纯BPFER/mXDA固化物。