This paper proposed a new scheme for smooth handoff over F-HMIPv6 networks based on Location Based Services(LBS). It uses the available information about mobile node(MN) such as user mobility patterns and MN's vel...This paper proposed a new scheme for smooth handoff over F-HMIPv6 networks based on Location Based Services(LBS). It uses the available information about mobile node(MN) such as user mobility patterns and MN's velocity to reduce handoff latency. In the proposed scheme, the movement pattern of users plays an important role in the performance analysis. The proposed scheme develops LBS that records a number of mobility patterns based on user daily behavior, and exploits these information to reduce the handoff latency. The proposed scheme is analyzed and compared with F-HMIPv6 protocol. The results show that it improves the performance in terms of handoff latency, packet delivery cost, and location update cost. Specifically, the proposed scheme achieves the tradeoff between realizing a smooth handoff and minimizing the cost that is the demand for all customers of mobile services.展开更多
IEEE802.16e is the major global cellular wireless standard that enables low-cost mobile Internet application. However, existing handover process system still has latency affects time-sensitive applications. In this pa...IEEE802.16e is the major global cellular wireless standard that enables low-cost mobile Internet application. However, existing handover process system still has latency affects time-sensitive applications. In this paper, the handover procedures of 802.16e and Fast Handover for Hierarchical MIPv6 (F-HMIPv6) are reconstructed to achieve a better transmission performance. The concept of cross layer design is adopted to refine the existing handover procedure specified in 802.16e MAC layer and F-HMIPv6. More specifically, layer2 and layer3 signaling messages for handover are analyzed and combined/interleaved to optimize the handover performance. Extensive simulations show that the proposed scheme in this paper is superior to the other scheme proposed by IETF.展开更多
A framework for end-to-end RSVP context transfer in Mobile IPv6(MIPv6) based on the architecture of F-HMIPv6 is proposed in this paper. The scheme provides an end-to-end RSVP context transfer for real-time application...A framework for end-to-end RSVP context transfer in Mobile IPv6(MIPv6) based on the architecture of F-HMIPv6 is proposed in this paper. The scheme provides an end-to-end RSVP context transfer for real-time applications to overcome the weakness of Context Transfer Protocol which can not meet the need of end-to-end QoS mechanisms because contexts are only transferred between Access Routers(ARs), therefore they can promptly get the same forwarding process, minimize the handover service disruption, and avoid initiating the end-to-end RSVP signaling from scratch after an MN performs handovers. It may also reduce the signaling overhead and handover latencies by adopting the F-HMIPv6architecture. The performance of the approach is compared with the re-initiating RSVP signaling to re-establish QoS states using network simulator, and the numerical results show that the scheme has the less latency and packet loss than that of the re-initiating approach.展开更多
文摘This paper proposed a new scheme for smooth handoff over F-HMIPv6 networks based on Location Based Services(LBS). It uses the available information about mobile node(MN) such as user mobility patterns and MN's velocity to reduce handoff latency. In the proposed scheme, the movement pattern of users plays an important role in the performance analysis. The proposed scheme develops LBS that records a number of mobility patterns based on user daily behavior, and exploits these information to reduce the handoff latency. The proposed scheme is analyzed and compared with F-HMIPv6 protocol. The results show that it improves the performance in terms of handoff latency, packet delivery cost, and location update cost. Specifically, the proposed scheme achieves the tradeoff between realizing a smooth handoff and minimizing the cost that is the demand for all customers of mobile services.
文摘IEEE802.16e is the major global cellular wireless standard that enables low-cost mobile Internet application. However, existing handover process system still has latency affects time-sensitive applications. In this paper, the handover procedures of 802.16e and Fast Handover for Hierarchical MIPv6 (F-HMIPv6) are reconstructed to achieve a better transmission performance. The concept of cross layer design is adopted to refine the existing handover procedure specified in 802.16e MAC layer and F-HMIPv6. More specifically, layer2 and layer3 signaling messages for handover are analyzed and combined/interleaved to optimize the handover performance. Extensive simulations show that the proposed scheme in this paper is superior to the other scheme proposed by IETF.
文摘A framework for end-to-end RSVP context transfer in Mobile IPv6(MIPv6) based on the architecture of F-HMIPv6 is proposed in this paper. The scheme provides an end-to-end RSVP context transfer for real-time applications to overcome the weakness of Context Transfer Protocol which can not meet the need of end-to-end QoS mechanisms because contexts are only transferred between Access Routers(ARs), therefore they can promptly get the same forwarding process, minimize the handover service disruption, and avoid initiating the end-to-end RSVP signaling from scratch after an MN performs handovers. It may also reduce the signaling overhead and handover latencies by adopting the F-HMIPv6architecture. The performance of the approach is compared with the re-initiating RSVP signaling to re-establish QoS states using network simulator, and the numerical results show that the scheme has the less latency and packet loss than that of the re-initiating approach.