The oil palm (Elaeisguineensis Jacq) is used worldwide in commercial agriculture for the production of palm oil, palm kernel oil and palm wine. It produces more oil per plant than any other oil-producing crop in the w...The oil palm (Elaeisguineensis Jacq) is used worldwide in commercial agriculture for the production of palm oil, palm kernel oil and palm wine. It produces more oil per plant than any other oil-producing crop in the world. Production is constrained by several factors among which pests/diseases are of utmost importance. Vascular wilt (VW) caused by Fusarium oxysporum is the most devastating disease infecting this crop. Its soil-borne ecology has made the use of fungicides to manage this disease too expensive and inpragmatic. There is need for concerted research in the breeding and selection of wilt-tolerant progenies as an essential step in the management of Fusarium wilt disease. The study aims to assess the incidence and severity of vascular wilt among tested oil palm progenies, to evaluate the reduction in yield caused by the disease in the susceptible progenies and to identify the wilt-tolerant, high-yielding progenies. The study was carried out at Pamol Plantations Limited (PPL) in Ndian Estate (Ndian Division), in the Southwest Region of Cameroon. Three field trials were evaluated for tolerance/susceptibility to Fusarium wilt. Each trial consisted of 15 oil palm progenies replicated 4 times. Each progeny had 25 oil palm stands in each replicate. Hence, a total of 1500 oil palm stands were assessed. The experimental design was a randomized complete block (RCB) with trial codes: Trial 2001/1, planted in 2001;Trial 2001/2, planted in 2002;Trial 2001/3, planted in 2003. Each trail had an area of 12 ha, with a plant density of 143 palms·ha−1. Wilt incidence, severity, index, and yield were evaluated on 45 progenies from the 3 trails after identifying Fusarium oxysporum from oil palm plant part. Data was subjected to analysis of variance, Fischer’s least significant difference test (LSD) for mean separation. Identification of Fusarium was based on descriptive analysis. Incidence of VW in the 3 trials ranged from 1% - 39%. Also, 45% of infected plants were from progeny 676 while 1% was from progenies 689, 693, 694 and 710. Disease severity was from 0.9 in progeny 686 to 4.55 in 676. Wilt index ranged from 131 for progeny 694 and 710 to 495 for progenies 705. Out of the 45 progenies evaluated, 27 were tolerant (1 < 100) and 18 susceptible (1 ≥ 100). Within the tolerant progenies, 4 were significant (1 < 20) while 5 out of 18 were significantly susceptible (1 ≥ 185). Mean yield reduction of the susceptible progenies was 34.8% while in the tolerant progenies, it increased by 9.5% when compared to their controls. Progenies 702, 703 and 709 are recommended for planting based on the level of tolerance to Fusarium wilt disease and yield.展开更多
Apple replant disease(ARD)negatively affects plant growth and reduces yields in replanted orchards.In this study,biochar was applied to apple replant soil with Fusarium oxysporum.Our aim was to investigate whether bio...Apple replant disease(ARD)negatively affects plant growth and reduces yields in replanted orchards.In this study,biochar was applied to apple replant soil with Fusarium oxysporum.Our aim was to investigate whether biochar could promote plant growth and alleviate apple replant disease by reducing the growth of harmful soil microorganisms,changing soil microbial community structure and improving the soil environment.This experiment included five treatments:apple replant soil(CK),methyl bromide fumigation apple replant soil(FM),replant soil with biochar addition(2%),replant soil with F.oxysporum spore solution(8×10^(7)spores·mL^(-1)),and replant soil with biochar and F.oxysporum spore solution addition.Seedling biomass,the activity of antioxidant enzymes in the leaves and roots,and soil environmental variables were measured.Microbial community composition and community structure were analyzed using 16SrDNA and ITS2 gene sequencing.Biochar significantly reduced the abundance of F.oxysporum and increased soil microbial diversity and richness.Biochar also increased the soil enzyme activities(urease,invertase,neutral phosphatase,and catalase),the biomass(plant height,fresh weight,dry weight)and the activity of antioxidant enzymes(superoxide dismutase,peroxidase,and catalase).The root indexes of apple seedlings was also increased in replant soil by biochar.In sum,biochar promoted the growth of plants,improved the replant soil environment,and alleviated apple replant disease.展开更多
Protein arginine methyltransferase-6 participates in a range of biological functions,particularly RNA processing,transcription,chromatin remodeling,and endosomal trafficking.However,it remains unclear whether protein ...Protein arginine methyltransferase-6 participates in a range of biological functions,particularly RNA processing,transcription,chromatin remodeling,and endosomal trafficking.However,it remains unclear whether protein arginine methyl transferase-6 modifies neuropathic pain and,if so,what the mechanisms of this effect.In this study,protein arginine methyltransferase-6 expression levels and its effect on neuropathic pain were investigated in the spared nerve injury model,chronic constriction injury model and bone cancer pain model,using immunohistochemistry,western blotting,immunoprecipitation,and label-free proteomic analysis.The results showed that protein arginine methyltransferase-6 mostly co-localized withβ-tubulinⅢin the dorsal root ganglion,and that its expression decreased following spared nerve injury,chronic constriction injury and bone cancer pain.In addition,PRMT6 knockout(Prmt6~(-/-))mice exhibited pain hypersensitivity.Furthermore,the development of spared nerve injury-induced hypersensitivity to mechanical pain was attenuated by blocking the decrease in protein arginine methyltransferase-6 expression.Moreover,when protein arginine methyltransferase-6 expression was downregulated in the dorsal root ganglion in mice without spared nerve injury,increased levels of phosphorylated extracellular signal-regulated kinases were observed in the ipsilateral dorsal horn,and the response to mechanical stimuli was enhanced.Mechanistically,protein arginine methyltransferase-6 appeared to contribute to spared nerve injury-induced neuropathic pain by regulating the expression of heterogeneous nuclear ribonucleoprotein-F.Additionally,protein arginine methyltransfe rase-6-mediated modulation of hete rogeneous nuclear ribonucleoprotein-F expression required amino atids 319 to 388,but not classical H3R2 methylation.These findings indicated that protein arginine methyltransferase-6 is a potential therapeutic target fo r the treatment of peripheral neuro pathic pain.展开更多
[Objective] With a strain of endophytic antagonistic bacteria with good disease control efficacy in pot as trial material,the paper was to explore the antagonistic mechanism of siderophore against Fusarium oxysporum.[...[Objective] With a strain of endophytic antagonistic bacteria with good disease control efficacy in pot as trial material,the paper was to explore the antagonistic mechanism of siderophore against Fusarium oxysporum.[Method] Whether the strain produced siderophore and its fluorescent property was judged by MSA(Modified Sugar-Aspartic acid) plate.The siderophore activity of strains in liquid MSA medium was determined through the absorbance values at particular wavelength.The inhibition effects of it siderophore against F.oxysporum under different concentrations of Fe3+ were compared.Then the strain was preliminarily identified based on morphological,physiological and biochemical characteristics [Result] The fluorescent siderophore produced by the endophytic bacteria in MSA medium had a strong inhibition effect against F.oxysporum.With the increasing concentration of Fe3+,the inhibition effect against the pathogen weakened.The preliminary analysis showed these strains belonged to Bacillus.[Conclusion] Bacillus could compete the absorption of Fe3+ by secreting siderophore to inhibit the growth of F.oxysporum.展开更多
[Objective]The aim was to provide theoretical basis for the control of cotton Fusarium wilt and cotton boll rot disease.[Method]The inhibitory activity of the extracts from three species of plants(Artemisia annual L.,...[Objective]The aim was to provide theoretical basis for the control of cotton Fusarium wilt and cotton boll rot disease.[Method]The inhibitory activity of the extracts from three species of plants(Artemisia annual L.,Artemisia capillaris Thunb.,Artemisia argyi Levl.et Vant)against Fusarium oxysporum f.sp.vasinfectum and Fusarium moniliforme were studied under the condition of laboratory.[Result]The extracts of all the three plants in Artemisia showed strong antifungal activity against the tested pathogenic ...展开更多
[Objective] To study the effects of different culture conditions on the Fusarium oxysporurn SchL f. sp. [Method] Based on species identification of the pathogenic organism of Fusarium oxysporum Schl. f. sp, effects of...[Objective] To study the effects of different culture conditions on the Fusarium oxysporurn SchL f. sp. [Method] Based on species identification of the pathogenic organism of Fusarium oxysporum Schl. f. sp, effects of different cultures and different nutrients on the mycelial growth and conidial production of Fusarium oxysporum SchL f. sp were studied. [Result] The mycelial growth and conidial pro- duction of Fusarium oxysporum SchL f. sp was different under different culture con- ditions. PDA medium was the most suitable medium for the mycelial growth and had the highest conidial production; and the mycelial grew the fastest on the medium with maltose as carbon source or peptone as nitrogen source, which also had the highest conidial production. [Conclusion] This study provided experimental basis for the study of Fusarium oxysporum SchL f. sp and also provided theoretical basis for the study and control of Fusarium oxysporum Schl. f. sp.展开更多
文摘The oil palm (Elaeisguineensis Jacq) is used worldwide in commercial agriculture for the production of palm oil, palm kernel oil and palm wine. It produces more oil per plant than any other oil-producing crop in the world. Production is constrained by several factors among which pests/diseases are of utmost importance. Vascular wilt (VW) caused by Fusarium oxysporum is the most devastating disease infecting this crop. Its soil-borne ecology has made the use of fungicides to manage this disease too expensive and inpragmatic. There is need for concerted research in the breeding and selection of wilt-tolerant progenies as an essential step in the management of Fusarium wilt disease. The study aims to assess the incidence and severity of vascular wilt among tested oil palm progenies, to evaluate the reduction in yield caused by the disease in the susceptible progenies and to identify the wilt-tolerant, high-yielding progenies. The study was carried out at Pamol Plantations Limited (PPL) in Ndian Estate (Ndian Division), in the Southwest Region of Cameroon. Three field trials were evaluated for tolerance/susceptibility to Fusarium wilt. Each trial consisted of 15 oil palm progenies replicated 4 times. Each progeny had 25 oil palm stands in each replicate. Hence, a total of 1500 oil palm stands were assessed. The experimental design was a randomized complete block (RCB) with trial codes: Trial 2001/1, planted in 2001;Trial 2001/2, planted in 2002;Trial 2001/3, planted in 2003. Each trail had an area of 12 ha, with a plant density of 143 palms·ha−1. Wilt incidence, severity, index, and yield were evaluated on 45 progenies from the 3 trails after identifying Fusarium oxysporum from oil palm plant part. Data was subjected to analysis of variance, Fischer’s least significant difference test (LSD) for mean separation. Identification of Fusarium was based on descriptive analysis. Incidence of VW in the 3 trials ranged from 1% - 39%. Also, 45% of infected plants were from progeny 676 while 1% was from progenies 689, 693, 694 and 710. Disease severity was from 0.9 in progeny 686 to 4.55 in 676. Wilt index ranged from 131 for progeny 694 and 710 to 495 for progenies 705. Out of the 45 progenies evaluated, 27 were tolerant (1 < 100) and 18 susceptible (1 ≥ 100). Within the tolerant progenies, 4 were significant (1 < 20) while 5 out of 18 were significantly susceptible (1 ≥ 185). Mean yield reduction of the susceptible progenies was 34.8% while in the tolerant progenies, it increased by 9.5% when compared to their controls. Progenies 702, 703 and 709 are recommended for planting based on the level of tolerance to Fusarium wilt disease and yield.
基金supported by the earmarked fund for National Natural Science Foundation of China(Grant No.31801816)National Modern Agro-industry Technology Research System(Grant No.CARS-27)Taishan scholar funded project(Grant No.TS20190923)。
文摘Apple replant disease(ARD)negatively affects plant growth and reduces yields in replanted orchards.In this study,biochar was applied to apple replant soil with Fusarium oxysporum.Our aim was to investigate whether biochar could promote plant growth and alleviate apple replant disease by reducing the growth of harmful soil microorganisms,changing soil microbial community structure and improving the soil environment.This experiment included five treatments:apple replant soil(CK),methyl bromide fumigation apple replant soil(FM),replant soil with biochar addition(2%),replant soil with F.oxysporum spore solution(8×10^(7)spores·mL^(-1)),and replant soil with biochar and F.oxysporum spore solution addition.Seedling biomass,the activity of antioxidant enzymes in the leaves and roots,and soil environmental variables were measured.Microbial community composition and community structure were analyzed using 16SrDNA and ITS2 gene sequencing.Biochar significantly reduced the abundance of F.oxysporum and increased soil microbial diversity and richness.Biochar also increased the soil enzyme activities(urease,invertase,neutral phosphatase,and catalase),the biomass(plant height,fresh weight,dry weight)and the activity of antioxidant enzymes(superoxide dismutase,peroxidase,and catalase).The root indexes of apple seedlings was also increased in replant soil by biochar.In sum,biochar promoted the growth of plants,improved the replant soil environment,and alleviated apple replant disease.
基金supported by the National Natural Science Foundation of China,Nos.82001178(to LW),81901129(to LH),82001175(to FX)Shanghai Sailing Program,No.20YF1439200(to LW)+1 种基金the Natural Science Foundation of Shanghai,China,No.23ZR1450800(to LH)and the Fundamental Research Funds for the Central Universities,No.YG2023LC15(to ZX)。
文摘Protein arginine methyltransferase-6 participates in a range of biological functions,particularly RNA processing,transcription,chromatin remodeling,and endosomal trafficking.However,it remains unclear whether protein arginine methyl transferase-6 modifies neuropathic pain and,if so,what the mechanisms of this effect.In this study,protein arginine methyltransferase-6 expression levels and its effect on neuropathic pain were investigated in the spared nerve injury model,chronic constriction injury model and bone cancer pain model,using immunohistochemistry,western blotting,immunoprecipitation,and label-free proteomic analysis.The results showed that protein arginine methyltransferase-6 mostly co-localized withβ-tubulinⅢin the dorsal root ganglion,and that its expression decreased following spared nerve injury,chronic constriction injury and bone cancer pain.In addition,PRMT6 knockout(Prmt6~(-/-))mice exhibited pain hypersensitivity.Furthermore,the development of spared nerve injury-induced hypersensitivity to mechanical pain was attenuated by blocking the decrease in protein arginine methyltransferase-6 expression.Moreover,when protein arginine methyltransferase-6 expression was downregulated in the dorsal root ganglion in mice without spared nerve injury,increased levels of phosphorylated extracellular signal-regulated kinases were observed in the ipsilateral dorsal horn,and the response to mechanical stimuli was enhanced.Mechanistically,protein arginine methyltransferase-6 appeared to contribute to spared nerve injury-induced neuropathic pain by regulating the expression of heterogeneous nuclear ribonucleoprotein-F.Additionally,protein arginine methyltransfe rase-6-mediated modulation of hete rogeneous nuclear ribonucleoprotein-F expression required amino atids 319 to 388,but not classical H3R2 methylation.These findings indicated that protein arginine methyltransferase-6 is a potential therapeutic target fo r the treatment of peripheral neuro pathic pain.
基金Supported by National Natural Science Foundation of China(30960010 )Principal Fund Key Projects of Tarim University(TDZKZD06001)~~
文摘[Objective] With a strain of endophytic antagonistic bacteria with good disease control efficacy in pot as trial material,the paper was to explore the antagonistic mechanism of siderophore against Fusarium oxysporum.[Method] Whether the strain produced siderophore and its fluorescent property was judged by MSA(Modified Sugar-Aspartic acid) plate.The siderophore activity of strains in liquid MSA medium was determined through the absorbance values at particular wavelength.The inhibition effects of it siderophore against F.oxysporum under different concentrations of Fe3+ were compared.Then the strain was preliminarily identified based on morphological,physiological and biochemical characteristics [Result] The fluorescent siderophore produced by the endophytic bacteria in MSA medium had a strong inhibition effect against F.oxysporum.With the increasing concentration of Fe3+,the inhibition effect against the pathogen weakened.The preliminary analysis showed these strains belonged to Bacillus.[Conclusion] Bacillus could compete the absorption of Fe3+ by secreting siderophore to inhibit the growth of F.oxysporum.
基金Supported by the 10th Five Years Program for Science and Technol-ogy Development of Anhui Province(01013011)Open Foundation Project of Key Lab for Food Safety of Anhui Province(las200508)~~
文摘[Objective]The aim was to provide theoretical basis for the control of cotton Fusarium wilt and cotton boll rot disease.[Method]The inhibitory activity of the extracts from three species of plants(Artemisia annual L.,Artemisia capillaris Thunb.,Artemisia argyi Levl.et Vant)against Fusarium oxysporum f.sp.vasinfectum and Fusarium moniliforme were studied under the condition of laboratory.[Result]The extracts of all the three plants in Artemisia showed strong antifungal activity against the tested pathogenic ...
文摘[Objective] To study the effects of different culture conditions on the Fusarium oxysporurn SchL f. sp. [Method] Based on species identification of the pathogenic organism of Fusarium oxysporum Schl. f. sp, effects of different cultures and different nutrients on the mycelial growth and conidial production of Fusarium oxysporum SchL f. sp were studied. [Result] The mycelial growth and conidial pro- duction of Fusarium oxysporum SchL f. sp was different under different culture con- ditions. PDA medium was the most suitable medium for the mycelial growth and had the highest conidial production; and the mycelial grew the fastest on the medium with maltose as carbon source or peptone as nitrogen source, which also had the highest conidial production. [Conclusion] This study provided experimental basis for the study of Fusarium oxysporum SchL f. sp and also provided theoretical basis for the study and control of Fusarium oxysporum Schl. f. sp.