Heading date is a crucial agronomic trait.However,rice usually delays heading due to the photoperiod,temperature,hormones or age.The present research was conducted to analyze the mechanism cotrlling heading date in F,...Heading date is a crucial agronomic trait.However,rice usually delays heading due to the photoperiod,temperature,hormones or age.The present research was conducted to analyze the mechanism cotrlling heading date in F,hybrid rice.We constructed two test-crossing populations using two introgression lines(ILs),P20 and P21 coming from SH527/FH838 as the male parent,respectively,and male sterile line Jin23A as the female parent.Meanwhile,the F,hybrids of H20,obtained by mating P20 with Jin23A and having no heading,and H21,from the crossing between P21 and Jin23A having normal heading,were both observed under long days.Here,we analyzed the photoperiodic response of F,hybrids by transcriptome and metabolome profiling.The greater differences displayed in the transcriptome and the metabolome were caused by photoperiod(exogenous)instead of genes(endogenous).The coping mechanism resulted from long days(LD)in H20,leading to differences in the circadian rhythm and glutathione metabolism relative to other samples.The circadian oscillator and GSH/GSSG cycle typically regulate ROS homeostasis,and both of them are responsible for modulating ROS in H20 under LD condition.Both circadian rhythm genes and the reported genes related to heading date function via the DHD1/OsMFT1-Ehd1-RFT1-OsMADS14/OsMADS18 pathway and the glutathione metabolism pathway by regulating oxidative reduction processes.Both pathways are involved in the heading process and they interacted through the oxidative reduction process which was induced by photoperiod regulation,and all of them collectively modulated the heading process.The results of this study will be helpful for unraveling the mechanism of F,hybrid responses to unheading under LD condition.展开更多
Circular RNAs(circRNAs)have been recognized as pivotal regulators in tumorigenesis,yet the biological functions as well as molecular mechanisms of the majority of circRNAs in hepatocellular carcinoma(HCC)remain elusiv...Circular RNAs(circRNAs)have been recognized as pivotal regulators in tumorigenesis,yet the biological functions as well as molecular mechanisms of the majority of circRNAs in hepatocellular carcinoma(HCC)remain elusive.We sought to unveil the expression profile and biological role of circMYBL2 in HCC.Initial microarray analyses were conducted to probe the expression profile of circMYBL2 in HCC cells,and qRT‒PCR analysis was then performed in HCC cell lines and tissues,revealing significant upregulation of circMYBL2.Subsequent experiments were conducted to evaluate the biological function of circMYBL2 in HCC progression.Furthermore,bioinformatics analysis,qRT‒PCR analysis,luciferase reporter assays,and western blot analysis were employed to investigate the interplay among circMYBL2,miR-1205,and E2F1.CircMYBL2 was found to exhibit marked upregulation in tumor tissues as well as HCC cell lines.Elevated expression of circMYBL2 increased the proliferation and migration of HCC cells,whereas circMYBL2 knockdown elicited contrasting effects.Mechanistically,our results indicated that circMYBL2 promoted E2F1 expression and facilitated HCC progression by sponging miR-1205.Our findings revealed that circMYBL2 contributed to HCC progression through the circMYBL2/miR-1205/E2F1 axis,suggesting the potential of circMYBL2 as a novel target for HCC treatment or a prognostic biomarker for HCC.展开更多
基金Supported by the National Basic Research Program of China(2014AA10A604).
文摘Heading date is a crucial agronomic trait.However,rice usually delays heading due to the photoperiod,temperature,hormones or age.The present research was conducted to analyze the mechanism cotrlling heading date in F,hybrid rice.We constructed two test-crossing populations using two introgression lines(ILs),P20 and P21 coming from SH527/FH838 as the male parent,respectively,and male sterile line Jin23A as the female parent.Meanwhile,the F,hybrids of H20,obtained by mating P20 with Jin23A and having no heading,and H21,from the crossing between P21 and Jin23A having normal heading,were both observed under long days.Here,we analyzed the photoperiodic response of F,hybrids by transcriptome and metabolome profiling.The greater differences displayed in the transcriptome and the metabolome were caused by photoperiod(exogenous)instead of genes(endogenous).The coping mechanism resulted from long days(LD)in H20,leading to differences in the circadian rhythm and glutathione metabolism relative to other samples.The circadian oscillator and GSH/GSSG cycle typically regulate ROS homeostasis,and both of them are responsible for modulating ROS in H20 under LD condition.Both circadian rhythm genes and the reported genes related to heading date function via the DHD1/OsMFT1-Ehd1-RFT1-OsMADS14/OsMADS18 pathway and the glutathione metabolism pathway by regulating oxidative reduction processes.Both pathways are involved in the heading process and they interacted through the oxidative reduction process which was induced by photoperiod regulation,and all of them collectively modulated the heading process.The results of this study will be helpful for unraveling the mechanism of F,hybrid responses to unheading under LD condition.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515010403,Ning Lyu)Natural Science Foundation of Guangdong Province,China(No.1914050001553,Dong Chen).
文摘Circular RNAs(circRNAs)have been recognized as pivotal regulators in tumorigenesis,yet the biological functions as well as molecular mechanisms of the majority of circRNAs in hepatocellular carcinoma(HCC)remain elusive.We sought to unveil the expression profile and biological role of circMYBL2 in HCC.Initial microarray analyses were conducted to probe the expression profile of circMYBL2 in HCC cells,and qRT‒PCR analysis was then performed in HCC cell lines and tissues,revealing significant upregulation of circMYBL2.Subsequent experiments were conducted to evaluate the biological function of circMYBL2 in HCC progression.Furthermore,bioinformatics analysis,qRT‒PCR analysis,luciferase reporter assays,and western blot analysis were employed to investigate the interplay among circMYBL2,miR-1205,and E2F1.CircMYBL2 was found to exhibit marked upregulation in tumor tissues as well as HCC cell lines.Elevated expression of circMYBL2 increased the proliferation and migration of HCC cells,whereas circMYBL2 knockdown elicited contrasting effects.Mechanistically,our results indicated that circMYBL2 promoted E2F1 expression and facilitated HCC progression by sponging miR-1205.Our findings revealed that circMYBL2 contributed to HCC progression through the circMYBL2/miR-1205/E2F1 axis,suggesting the potential of circMYBL2 as a novel target for HCC treatment or a prognostic biomarker for HCC.