In this study, the relationship between the neutral components (N2 and 02) in the E-region of the ionosphere (at 110 km altitude) for the Singapore (01.23 N; 103.55 E) station in the equatorial region and the FI...In this study, the relationship between the neutral components (N2 and 02) in the E-region of the ionosphere (at 110 km altitude) for the Singapore (01.23 N; 103.55 E) station in the equatorial region and the FI0.7 solar flux and z-component of Interplanetary Magnetic Field (IMF-Bz) was investigated. This relationship was determined by means of statistical multiple regression model. As a result, it was observed that the changes in F10.7 solar flux and IMF-Bz were inversely proportional to the changes in N2 and 02. 92% and 83% of changes in N2 and O2 were found to be explained by F10.7 solar flux and IMF-Bz, respectively. When the F10.7 solar flux is changed by 1 s.f.u., it causes a decrease of 2.61×10TM m-3 in N2 and 2.96×1014 m-3 in O2. Change of I nT in IMF-Bz causes a decrease of 9.95× 1015 m-3 in N2 and 1.69× 1015 m-3 in O2.展开更多
To satisfy high-precision,widc-rangc,and real-time neutron flux measurement requirements by the International Thermonuclear Experimental Reactor(ITF.R),a data acquisition and control system based on fission chamber de...To satisfy high-precision,widc-rangc,and real-time neutron flux measurement requirements by the International Thermonuclear Experimental Reactor(ITF.R),a data acquisition and control system based on fission chamber detectors and fast controller technology,has been developed for neutron flux monitor in ITER Equatorial Port#7.The signal processing units which arc based on a field programmable gate array and the PXI Express platform arc designed to realize the neutron flux measurement with I ms time resolution and a fast response less than 0.2 ms,together with real-time timestamps provided by a timing hoard.The application of the wide-range algorithm allows the system to measure up to 10^10cps with a relative error of less than 5%.Furthermore,the system is managed and controlled by a software based on the Experimental Physics and Industrial Control System,compliant with COntrol.Data Access and Communication architecture.展开更多
文摘In this study, the relationship between the neutral components (N2 and 02) in the E-region of the ionosphere (at 110 km altitude) for the Singapore (01.23 N; 103.55 E) station in the equatorial region and the FI0.7 solar flux and z-component of Interplanetary Magnetic Field (IMF-Bz) was investigated. This relationship was determined by means of statistical multiple regression model. As a result, it was observed that the changes in F10.7 solar flux and IMF-Bz were inversely proportional to the changes in N2 and 02. 92% and 83% of changes in N2 and O2 were found to be explained by F10.7 solar flux and IMF-Bz, respectively. When the F10.7 solar flux is changed by 1 s.f.u., it causes a decrease of 2.61×10TM m-3 in N2 and 2.96×1014 m-3 in O2. Change of I nT in IMF-Bz causes a decrease of 9.95× 1015 m-3 in N2 and 1.69× 1015 m-3 in O2.
文摘To satisfy high-precision,widc-rangc,and real-time neutron flux measurement requirements by the International Thermonuclear Experimental Reactor(ITF.R),a data acquisition and control system based on fission chamber detectors and fast controller technology,has been developed for neutron flux monitor in ITER Equatorial Port#7.The signal processing units which arc based on a field programmable gate array and the PXI Express platform arc designed to realize the neutron flux measurement with I ms time resolution and a fast response less than 0.2 ms,together with real-time timestamps provided by a timing hoard.The application of the wide-range algorithm allows the system to measure up to 10^10cps with a relative error of less than 5%.Furthermore,the system is managed and controlled by a software based on the Experimental Physics and Industrial Control System,compliant with COntrol.Data Access and Communication architecture.