Hepatocellular carcinoma(HCC)is a leading cause of death worldwide.Current therapies are effective for HCC patients with early disease,but many patients suffer recurrence after surgery and have a poor response to chem...Hepatocellular carcinoma(HCC)is a leading cause of death worldwide.Current therapies are effective for HCC patients with early disease,but many patients suffer recurrence after surgery and have a poor response to chemotherapy.Therefore,new therapeutic targets are needed.We analyzed gene expression profiles between HCC tissues and normal adjacent tissues from public databases and found that the expression of genes involved in lipid metabolism was significantly different.The analysis showed that AKR1C3 was upregulated in tumors,and high AKR1C3 expression was associated with a poorer prognosis in HCC patients.In vitro,assays demonstrated that the knockdown of AKR1C3 or the addition of the AKR1C3 inhibitor indomethacin suppressed the growth and colony formation of HCC cell lines.Knockdown of AKR1C3 in Huh7 cells reduced tumor growth in vivo.To explore the mechanism,we performed pathway enrichment analysis,and the results linked the expression of AKR1C3 with prostaglandin F2 alpha(PGF2a)downstream target genes.Suppression of AKR1C3 activity reduced the production of PGF2a,and supplementation with PGF2a restored the growth of indomethacin-treated Huh7 cells.Knockdown of the PGF receptor(PTGFR)and treatment with a PTGFR inhibitor significantly reduced HCC growth.We showed that indomethacin potentiated the sensitivity of Huh7 cells to sorafenib.In summary,our results indicate that AKR1C3 upregulation may promote HCC growth by promoting the production of PGF2α,and suppression of PTGFR limited HCC growth.Therefore,targeting the AKR1C3-PGF2a-PTGFR axis may be a new strategy for the treatment of HCC.展开更多
Iron oxide(Fe_(2)O_(3))emerges as a highly attractive anode candidate among rapidly expanding energy storage market.Nonethe-less,its considerable volume changes during cycling as an electrode material result in a vast...Iron oxide(Fe_(2)O_(3))emerges as a highly attractive anode candidate among rapidly expanding energy storage market.Nonethe-less,its considerable volume changes during cycling as an electrode material result in a vast reduced battery cycle life.In this work,an ap-proach is pioneered for preparing high-performance Fe_(2)O_(3)anode materials,by innovatively synthesizing a triple-layer yolk-shell Fe_(2)O_(3)uniformly coated with a conductive polypyrrole(Ppy)layer(Fe_(2)O_(3)@Ppy-TLY).The uniform polypyrrole coating introduces more reac-tion sites and adsorption sites,and maintains structure stability through charge-discharge process.In the uses as lithium-ion battery elec-trodes,Fe_(2)O_(3)@Ppy-TLY demonstrates high reversible specific capacity(maintaining a discharge capacity of 1375.11 mAh·g^(−1)after 500 cycles at 1 C),exceptional cycling stability(retaining the steady charge-discharge performance at 544.33 mAh·g^(−1)after 6000 ultrafast charge-discharge cycles at a 10 C current density),and outstanding high current charge-discharge performance(retaining a reversible ca-pacity of 156.75 mAh·g^(−1)after 10000 cycles at 15 C),thereby exhibiting superior lithium storage performance.This work introduces in-novative advancements for Fe_(2)O_(3)anode design,aiming to enhance its performance in energy storage fields.展开更多
Bivalve aquaculture plays a crucial role in the aquaculture industry due to the economic value of many bivalve species.Understanding the underlying genetic basis of bivalve growth regulation is essential for enhancing...Bivalve aquaculture plays a crucial role in the aquaculture industry due to the economic value of many bivalve species.Understanding the underlying genetic basis of bivalve growth regulation is essential for enhancing germplasm innovation and ensuring sustainable development of the industry.Though numerous candidate genes have been identified,their functional validation remains challenging.Fortunately,the dwarf surf clam(Mulinia lateralis)serves as a promising model organism for investigating genetic mechanisms underlying growth regulation in bivalves.The GWAS study in the Yesso scallop(Patinopecten yessoensis)has pinpointed the E2F3 gene as a key regulator of growth-related traits.However,the specific role of E2F3 in bivalve growth remains unclear.This study aimed to further confirm the regulatory function of the E2F3 gene in the dwarf surf clam through RNA interference experiments.Our results revealed several genes are associated with individual growth and development,including CTS7,HSP70B2,and PGLYRP3,as well as genes involved in lipid metabolism such as FABP2 and FASN.Functional enrichment analysis indicated that E2F3 primarily modulates critical processes like amino acid and lipid metabolism.These findings suggest that E2F3 likely regulates growth in the dwarf surf clam by influencing amino acid and lipid metabolism.Overall,this study advances our understanding on the function of E2F3 gene in growth regulation in bivalves,providing valuable insights for future research in this field.展开更多
基金National Yang Ming Chiao Tung University Far Eastern Memorial Hospital Joint Research Programs(NYCU-FEMH 109DN03,110DN06,111DN04,112DN05).
文摘Hepatocellular carcinoma(HCC)is a leading cause of death worldwide.Current therapies are effective for HCC patients with early disease,but many patients suffer recurrence after surgery and have a poor response to chemotherapy.Therefore,new therapeutic targets are needed.We analyzed gene expression profiles between HCC tissues and normal adjacent tissues from public databases and found that the expression of genes involved in lipid metabolism was significantly different.The analysis showed that AKR1C3 was upregulated in tumors,and high AKR1C3 expression was associated with a poorer prognosis in HCC patients.In vitro,assays demonstrated that the knockdown of AKR1C3 or the addition of the AKR1C3 inhibitor indomethacin suppressed the growth and colony formation of HCC cell lines.Knockdown of AKR1C3 in Huh7 cells reduced tumor growth in vivo.To explore the mechanism,we performed pathway enrichment analysis,and the results linked the expression of AKR1C3 with prostaglandin F2 alpha(PGF2a)downstream target genes.Suppression of AKR1C3 activity reduced the production of PGF2a,and supplementation with PGF2a restored the growth of indomethacin-treated Huh7 cells.Knockdown of the PGF receptor(PTGFR)and treatment with a PTGFR inhibitor significantly reduced HCC growth.We showed that indomethacin potentiated the sensitivity of Huh7 cells to sorafenib.In summary,our results indicate that AKR1C3 upregulation may promote HCC growth by promoting the production of PGF2α,and suppression of PTGFR limited HCC growth.Therefore,targeting the AKR1C3-PGF2a-PTGFR axis may be a new strategy for the treatment of HCC.
基金supported by the Natural Science Foundation of Jiangsu Province of China(No.BK20201008).
文摘Iron oxide(Fe_(2)O_(3))emerges as a highly attractive anode candidate among rapidly expanding energy storage market.Nonethe-less,its considerable volume changes during cycling as an electrode material result in a vast reduced battery cycle life.In this work,an ap-proach is pioneered for preparing high-performance Fe_(2)O_(3)anode materials,by innovatively synthesizing a triple-layer yolk-shell Fe_(2)O_(3)uniformly coated with a conductive polypyrrole(Ppy)layer(Fe_(2)O_(3)@Ppy-TLY).The uniform polypyrrole coating introduces more reac-tion sites and adsorption sites,and maintains structure stability through charge-discharge process.In the uses as lithium-ion battery elec-trodes,Fe_(2)O_(3)@Ppy-TLY demonstrates high reversible specific capacity(maintaining a discharge capacity of 1375.11 mAh·g^(−1)after 500 cycles at 1 C),exceptional cycling stability(retaining the steady charge-discharge performance at 544.33 mAh·g^(−1)after 6000 ultrafast charge-discharge cycles at a 10 C current density),and outstanding high current charge-discharge performance(retaining a reversible ca-pacity of 156.75 mAh·g^(−1)after 10000 cycles at 15 C),thereby exhibiting superior lithium storage performance.This work introduces in-novative advancements for Fe_(2)O_(3)anode design,aiming to enhance its performance in energy storage fields.
基金funded by the National Natural Science Foundation of China (No. U2106231)the Key Research and Development Project of Shandong Province (No. 2021 ZLGX03)the National Key Research and Development Program of China (No. 2022YFD2400303)
文摘Bivalve aquaculture plays a crucial role in the aquaculture industry due to the economic value of many bivalve species.Understanding the underlying genetic basis of bivalve growth regulation is essential for enhancing germplasm innovation and ensuring sustainable development of the industry.Though numerous candidate genes have been identified,their functional validation remains challenging.Fortunately,the dwarf surf clam(Mulinia lateralis)serves as a promising model organism for investigating genetic mechanisms underlying growth regulation in bivalves.The GWAS study in the Yesso scallop(Patinopecten yessoensis)has pinpointed the E2F3 gene as a key regulator of growth-related traits.However,the specific role of E2F3 in bivalve growth remains unclear.This study aimed to further confirm the regulatory function of the E2F3 gene in the dwarf surf clam through RNA interference experiments.Our results revealed several genes are associated with individual growth and development,including CTS7,HSP70B2,and PGLYRP3,as well as genes involved in lipid metabolism such as FABP2 and FASN.Functional enrichment analysis indicated that E2F3 primarily modulates critical processes like amino acid and lipid metabolism.These findings suggest that E2F3 likely regulates growth in the dwarf surf clam by influencing amino acid and lipid metabolism.Overall,this study advances our understanding on the function of E2F3 gene in growth regulation in bivalves,providing valuable insights for future research in this field.