期刊文献+
共找到546篇文章
< 1 2 28 >
每页显示 20 50 100
Prediction of the undrained shear strength of remolded soil with non-linear regression,fuzzy logic,and artificial neural network
1
作者 YÜNKÜL Kaan KARAÇOR Fatih +1 位作者 GÜRBÜZ Ayhan BUDAK TahsinÖmür 《Journal of Mountain Science》 SCIE CSCD 2024年第9期3108-3122,共15页
This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results... This study aims to predict the undrained shear strength of remolded soil samples using non-linear regression analyses,fuzzy logic,and artificial neural network modeling.A total of 1306 undrained shear strength results from 230 different remolded soil test settings reported in 21 publications were collected,utilizing six different measurement devices.Although water content,plastic limit,and liquid limit were used as input parameters for fuzzy logic and artificial neural network modeling,liquidity index or water content ratio was considered as an input parameter for non-linear regression analyses.In non-linear regression analyses,12 different regression equations were derived for the prediction of undrained shear strength of remolded soil.Feed-Forward backpropagation and the TANSIG transfer function were used for artificial neural network modeling,while the Mamdani inference system was preferred with trapezoidal and triangular membership functions for fuzzy logic modeling.The experimental results of 914 tests were used for training of the artificial neural network models,196 for validation and 196 for testing.It was observed that the accuracy of the artificial neural network and fuzzy logic modeling was higher than that of the non-linear regression analyses.Furthermore,a simple and reliable regression equation was proposed for assessments of undrained shear strength values with higher coefficients of determination. 展开更多
关键词 Undrained shear strength Liquidity index Water content ratio Non-linear regression artificial neural networks fuzzy logic
下载PDF
Artificial Neural Network and Fuzzy Logic Based Techniques for Numerical Modeling and Prediction of Aluminum-5%Magnesium Alloy Doped with REM Neodymium
2
作者 Anukwonke Maxwell Chukwuma Chibueze Ikechukwu Godwills +1 位作者 Cynthia C. Nwaeju Osakwe Francis Onyemachi 《International Journal of Nonferrous Metallurgy》 2024年第1期1-19,共19页
In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties ... In this study, the mechanical properties of aluminum-5%magnesium doped with rare earth metal neodymium were evaluated. Fuzzy logic (FL) and artificial neural network (ANN) were used to model the mechanical properties of aluminum-5%magnesium (0-0.9 wt%) neodymium. The single input (SI) to the fuzzy logic and artificial neural network models was the percentage weight of neodymium, while the multiple outputs (MO) were average grain size, ultimate tensile strength, yield strength elongation and hardness. The fuzzy logic-based model showed more accurate prediction than the artificial neutral network-based model in terms of the correlation coefficient values (R). 展开更多
关键词 Al-5%Mg Alloy NEODYMIUM artificial neural network fuzzy Logic Average Grain Size and Mechanical Properties
下载PDF
Real-Time Prediction of Urban Traffic Problems Based on Artificial Intelligence-Enhanced Mobile Ad Hoc Networks(MANETS)
3
作者 Ahmed Alhussen Arshiya S.Ansari 《Computers, Materials & Continua》 SCIE EI 2024年第5期1903-1923,共21页
Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Ne... Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities. 展开更多
关键词 Mobile AdHocnetworks(MANET) urban traffic prediction artificial intelligence(AI) traffic congestion chaotic spatial fuzzy polynomial neural network(CSFPNN)
下载PDF
ARTIFICIAL NEURAL NETWORK AND FUZZY LOGIC CONTROLLER FOR GTAW MODELING AND CONTROL 被引量:3
4
作者 Gao Xiangdong Faculty of Mechanical and Electrical Engineering,Guangdong University of Technology, Guangzhou 510090,China Huang Shisheng South China University of Technology 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2002年第1期53-56,共4页
An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and c... An artificial neural network(ANN) and a self-adjusting fuzzy logiccontroller(FLC) for modeling and control of gas tungsten arc welding(GTAW) process are presented.The discussion is mainly focused on the modeling and control of the weld pool depth with ANN and theintelligent control for weld seam tracking with FLC. The proposed neural network can produce highlycomplex nonlinear multi-variable model of the GTAW process that offers the accurate prediction ofwelding penetration depth. A self-adjusting fuzzy controller used for seam tracking adjusts thecontrol parameters on-line automatically according to the tracking errors so that the torch positioncan be controlled accurately. 展开更多
关键词 artificial neural network fuzzy logic control Weld pool depth Seamtracking
下载PDF
Fault Diagnostics on Steam Boilers and Forecasting System Based on Hybrid Fuzzy Clustering and Artificial Neural Networks in Early Detection of Chamber Slagging/Fouling 被引量:1
5
作者 Mohan Sathya Priya Radhakrishnan Kanthavel Muthusamy Saravanan 《Circuits and Systems》 2016年第12期4046-4070,共25页
The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three m... The slagging/fouling due to the accession of fireside deposits on the steam boilers decreases boiler efficiency and availability which leads to unexpected shut-downs. Since it is inevitably associated with the three major factors namely the fuel characteristics, boiler operating conditions and ash behavior, this serious slagging/fouling may be reduced by varying the above three factors. The research develops a generic slagging/fouling prediction tool based on hybrid fuzzy clustering and Artificial Neural Networks (FCANN). The FCANN model presents a good accuracy of 99.85% which makes this model fast in response and easy to be updated with lesser time when compared to single ANN. The comparison between predictions and observations is found to be satisfactory with less input parameters. This should be capable of giving relatively quick responses while being easily implemented for various furnace types. 展开更多
关键词 Steam Boiler Fouling and Slagging fuzzy Clustering artificial neural networks
下载PDF
Simultaneous Forecast for Three Speciations of Heavy Metal Elements Using Fuzzy Cluster-Artificial Neural Network
6
作者 ZHAO Tian-qi MENG Fan-yu +1 位作者 WANG Hong-yan GAO Yan 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第5期802-806,共5页
The three speciations(water extract, adsorption and organic speciations) of Cu, Zn, Fe and Mn in geo-chemical samples were determined by fuzzy cluster-artificial neural network(FC-ANN) method coupled with atomic a... The three speciations(water extract, adsorption and organic speciations) of Cu, Zn, Fe and Mn in geo-chemical samples were determined by fuzzy cluster-artificial neural network(FC-ANN) method coupled with atomic absorption spectrometry. A back-propagation artificial neural network with one input node and three export nodes was constructed, which could forecaste three speciations of heavy metals simultaneously. In the learning sample set, the three speciations of each element were allowed to change in a wide concentration range and the accuracy of the analysis was apparently increased via the learning sample set optimized with the help of the fuzzy cluster analysis. The average relative errors of the three speciations of Cu, Zn, Fe or Mn from 100 geo-chemical samples were less than 5%. The relative standard deviations of the three speciations of each of four heavy metals were 0.008%―4.43%. 展开更多
关键词 fuzzy cluster artificial neural network SPECIATION
下载PDF
Comparative Analysis between Conventional PI, Fuzzy Logic and Artificial Neural Network Based Speed Controllers of Induction Motor with Considering Core Loss and Stray Load Loss
7
作者 Md. Rifat Hazari Effat Jahan +1 位作者 Mohammad Abdul Mannan Junji Tamura 《Journal of Mechanics Engineering and Automation》 2017年第1期50-57,共8页
Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise perform... Most of the controllers of IM (induction motor) for industrial applications have been designed based on PI controller without consideration of CL (core loss) and SLL (stray load loss). To get the precise performances of torque as well as rotor speed and flux, the above mentioned losses should be considered. Conventional PI controller has overshoot effect at the transient period of the speed response curve. On the other hand, fuzzy logic and ANN (artificial neural network) based controllers can minimize the overshoot effect at the transient period because they have the abilities to deal with the nonlinear systems. In this paper, a comparative analysis is done between PI, fuzzy logic and ANN based speed controllers to find the suitable control strategy for IM with consideration of CL and SLL. The simulation analysis is done by using Matlab/Simulink software. The simulation results show that the fuzzy logic based speed controller gives better responses than ANN and conventional PI based speed controllers in terms of rotor speed, electromagnetic torque and rotor flux of IM. 展开更多
关键词 Core loss stray load loss PI controller fuzzy logic controller artificial neural network controller
下载PDF
A Novel Real-Time Fault Diagnostic System for Steam Turbine Generator Set by Using Strata Hierarchical Artificial Neural Network
8
作者 Changfeng YAN Hao ZHANG Lixiao WU 《Energy and Power Engineering》 2009年第1期7-16,共10页
The real-time fault diagnosis system is very great important for steam turbine generator set due to a serious fault results in a reduced amount of electricity supply in power plant. A novel real-time fault diagnosis s... The real-time fault diagnosis system is very great important for steam turbine generator set due to a serious fault results in a reduced amount of electricity supply in power plant. A novel real-time fault diagnosis system is proposed by using strata hierarchical fuzzy CMAC neural network. A framework of the fault diagnosis system is described. Hierarchical fault diagnostic structure is discussed in detail. The model of a novel fault diagnosis system by using fuzzy CMAC are built and analyzed. A case of the diagnosis is simulated. The results show that the real-time fault diagnostic system is of high accuracy, quick convergence, and high noise rejection. It is also found that this model is feasible in real-time fault diagnosis. 展开更多
关键词 REAL-TIME FAULT diagnosis STRATA HIERARCHICAL artificial neural network fuzzy CMAC
下载PDF
Application of FAHP and Artificial Neural Network on Clothing Plant Location
9
作者 曾献辉 邵世煌 区建勋 《Journal of Donghua University(English Edition)》 EI CAS 2005年第4期116-122,共7页
Clothing manufacturers' direct investment and joint ventures in developing regions have seen to grow rapidly in the past few decades. Non-optimized selection can contribute to adverse effects affecting the performanc... Clothing manufacturers' direct investment and joint ventures in developing regions have seen to grow rapidly in the past few decades. Non-optimized selection can contribute to adverse effects affecting the performance of the plants on aspects of productivity, manufacturing and logistics cost. Selection of proper plant location is thus crucial. The conventional approaches to sites location are based on the factors and their weights. However, determining the weight of each factor is very difficult and time consuming. While the situation is changed, all the work must be redone again. This study aims to develop a decision-making system on clothing plant location for Hoog Kong clothing manufacturer. The proposed system utilizes artificial neural network to study the relationship between the factors and the suitability index of candidate sites. Firstly, the factors are stratified using the fuzzy analytical hierarchy process (FAHP) by review the related references and interviewing the experts. Secondly, the corresponding data are collected from the experts by questionnaire and the related government publication. Finally, the feedforward neural network with error backpropagation(EBP) learning algorithm is trained and applied to make decision. The results show that the proposed system performs well and has the characteristic of adaptability and plasticity. 展开更多
关键词 clothing manufacture plant location artificial neural network fuzzy analytical hierarchy process(FAHP).
下载PDF
Forecasting of Software Reliability Using Neighborhood Fuzzy Particle Swarm Optimization Based Novel Neural Network 被引量:11
10
作者 Pratik Roy Ghanshaym Singha Mahapatra Kashi Nath Dey 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1365-1383,共19页
This paper proposes an artificial neural network(ANN) based software reliability model trained by novel particle swarm optimization(PSO) algorithm for enhanced forecasting of the reliability of software. The proposed ... This paper proposes an artificial neural network(ANN) based software reliability model trained by novel particle swarm optimization(PSO) algorithm for enhanced forecasting of the reliability of software. The proposed ANN is developed considering the fault generation phenomenon during software testing with the fault complexity of different levels. We demonstrate the proposed model considering three types of faults residing in the software. We propose a neighborhood based fuzzy PSO algorithm for competent learning of the proposed ANN using software failure data. Fitting and prediction performances of the neighborhood fuzzy PSO based proposed neural network model are compared with the standard PSO based proposed neural network model and existing ANN based software reliability models in the literature through three real software failure data sets. We also compare the performance of the proposed PSO algorithm with the standard PSO algorithm through learning of the proposed ANN. Statistical analysis shows that the neighborhood fuzzy PSO based proposed neural network model has comparatively better fitting and predictive ability than the standard PSO based proposed neural network model and other ANN based software reliability models. Faster release of software is achievable by applying the proposed PSO based neural network model during the testing period. 展开更多
关键词 artificial neural network(ANN) fuzzy particle SWARM optimization(PSO) RELIABILITY prediction software RELIABILITY
下载PDF
Fuzzy Entropy Based Combined Learning Algorithm for Neural Networks 被引量:3
11
作者 Min Yao (Dept. of Computer Science, Hangzhou University, Hangzhou 310028,P. R. China ) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第1期15-22,共8页
Learning is one of key problems of artificial neural networks. In this paper, we present a kind of combined learning algorithm based on fuzzy entropy criterion for neural networks. The basic idea is to simulate the le... Learning is one of key problems of artificial neural networks. In this paper, we present a kind of combined learning algorithm based on fuzzy entropy criterion for neural networks. The basic idea is to simulate the learning mechanism of human brain and overcome the limitations of monocrifsterion learning. The comparison is made between the given learning algorithm and the typical BP algorithm in order to show the characteristics of the new algorithm. 展开更多
关键词 artificial neural networks Combined learning fuzzy entropy criterion.
下载PDF
Hybrid Power Systems Energy Controller Based on Neural Network and Fuzzy Logic 被引量:2
12
作者 Emad M. Natsheh Alhussein Albarbar 《Smart Grid and Renewable Energy》 2013年第2期187-197,共11页
This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy sto... This paper presents a novel adaptive scheme for energy management in stand-alone hybrid power systems. The proposed management system is designed to manage the power flow between the hybrid power system and energy storage elements in order to satisfy the load requirements based on artificial neural network (ANN) and fuzzy logic controllers. The neural network controller is employed to achieve the maximum power point (MPP) for different types of photovoltaic (PV) panels. The advance fuzzy logic controller is developed to distribute the power among the hybrid system and to manage the charge and discharge current flow for performance optimization. The developed management system performance was assessed using a hybrid system comprised PV panels, wind turbine (WT), battery storage, and proton exchange membrane fuel cell (PEMFC). To improve the generating performance of the PEMFC and prolong its life, stack temperature is controlled by a fuzzy logic controller. The dynamic behavior of the proposed model is examined under different operating conditions. Real-time measured parameters are used as inputs for the developed system. The proposed model and its control strategy offer a proper tool for optimizing hybrid power system performance, such as that used in smart-house applications. 展开更多
关键词 artificial neural network Energy Management fuzzy Control Hybrid POWER Systems MAXIMUM POWER Point TRACKER Modeling
下载PDF
Effective data transmission through energy-efficient clustering and Fuzzy-Based IDS routing approach in WSNs
13
作者 Saziya TABBASSUM Rajesh Kumar PATHAK 《虚拟现实与智能硬件(中英文)》 EI 2024年第1期1-16,共16页
Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,a... Wireless sensor networks(WSN)gather information and sense information samples in a certain region and communicate these readings to a base station(BS).Energy efficiency is considered a major design issue in the WSNs,and can be addressed using clustering and routing techniques.Information is sent from the source to the BS via routing procedures.However,these routing protocols must ensure that packets are delivered securely,guaranteeing that neither adversaries nor unauthentic individuals have access to the sent information.Secure data transfer is intended to protect the data from illegal access,damage,or disruption.Thus,in the proposed model,secure data transmission is developed in an energy-effective manner.A low-energy adaptive clustering hierarchy(LEACH)is developed to efficiently transfer the data.For the intrusion detection systems(IDS),Fuzzy logic and artificial neural networks(ANNs)are proposed.Initially,the nodes were randomly placed in the network and initialized to gather information.To ensure fair energy dissipation between the nodes,LEACH randomly chooses cluster heads(CHs)and allocates this role to the various nodes based on a round-robin management mechanism.The intrusion-detection procedure was then utilized to determine whether intruders were present in the network.Within the WSN,a Fuzzy interference rule was utilized to distinguish the malicious nodes from legal nodes.Subsequently,an ANN was employed to distinguish the harmful nodes from suspicious nodes.The effectiveness of the proposed approach was validated using metrics that attained 97%accuracy,97%specificity,and 97%sensitivity of 95%.Thus,it was proved that the LEACH and Fuzzy-based IDS approaches are the best choices for securing data transmission in an energy-efficient manner. 展开更多
关键词 Low energy adaptive clustering hierarchy(LEACH) Intrusion detection system(IDS) Wireless sensor network(WSN) fuzzy logic and artificial neural network(ANN)
下载PDF
Applying Neural Network withGenetic Algorithm and FuzzySelection Models to Select Equipmentsfor Fully-Mechanized Coal Mining
14
作者 王新宇 吴瑞明 冯春花 《Journal of China University of Mining and Technology》 2004年第2期147-151,共5页
According to the typical engineering samples, a neural net work model with genetic algorithm to optimize weight values is put forward to forecast the productivities and efficiencies of mining faces. By this model we c... According to the typical engineering samples, a neural net work model with genetic algorithm to optimize weight values is put forward to forecast the productivities and efficiencies of mining faces. By this model we can obtain the possible achievements of available equipment combinations under certain geological situations of fully-mechanized coal mining faces. Then theory of fuzzy selection is applied to evaluate the performance of each equipment combination. By detailed empirical analysis, this model integrates the functions of forecasting mining faces' achievements and selecting optimal equipment combination and is helpful to the decision of equipment combination for fully-mechanized coal mining. 展开更多
关键词 GENETIC algorithm artificial neural network fuzzy SELECTION SELECTION of equipment combination
下载PDF
Short-Term Electricity Price Forecasting Using a Combination of Neural Networks and Fuzzy Inference
15
作者 Evans Nyasha Chogumaira Takashi Hiyama 《Energy and Power Engineering》 2011年第1期9-16,共8页
This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-tu... This paper presents an artificial neural network, ANN, based approach for estimating short-term wholesale electricity prices using past price and demand data. The objective is to utilize the piecewise continuous na-ture of electricity prices on the time domain by clustering the input data into time ranges where the variation trends are maintained. Due to the imprecise nature of cluster boundaries a fuzzy inference technique is em-ployed to handle data that lies at the intersections. As a necessary step in forecasting prices the anticipated electricity demand at the target time is estimated first using a separate ANN. The Australian New-South Wales electricity market data was used to test the system. The developed system shows considerable im-provement in performance compared with approaches that regard price data as a single continuous time se-ries, achieving MAPE of less than 2% for hours with steady prices and 8% for the clusters covering time pe-riods with price spikes. 展开更多
关键词 ELECTRICITY PRICE Forecasting SHORT-TERM Load Forecasting ELECTRICITY MARKETS artificial neural networks fuzzy LOGIC
下载PDF
Study of Synthesis Identification in Cutting Process with Fuzzy Neural Network
16
作者 LIN Bin, YU Si-yuan, ZHU Hong-tao, ZHU Meng-zhou, LIN Meng-xia (The State Education Ministry Key Laboratory of High Temperature Structure Ceramics and Machining Technology of Engineering Ceramics, Tianjin University, Tianjin 300072, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期40-41,共2页
With the development of industrial production modernization, FMS and CIMS will become more and more popularized. For its control system is increasingly modeled, intellectualized and automatized, in order to raise the ... With the development of industrial production modernization, FMS and CIMS will become more and more popularized. For its control system is increasingly modeled, intellectualized and automatized, in order to raise the reliability and stability in the manufacturing process, the comprehensive monitoring and diagnosis aimed at cutting tool wear and chatter become more and more important and get rapid development. The paper tried to discuss of the intellectual status identification method based on acoustics-vibra characteristics of machining process, and propose that the working conditions may be taken as a core, complex fuzzy inference neural network model based on artificial neural network theory, and by using various kinds of modernized signal processing method to abstract enough characteristics parameters which will reflect overall processing status from machining acoustics-vibra signal as information source, to identify different working condition, and provide guarantee for automation and intelligence in machining process. The complex network is composed of NNw and NNs, Each of them is composed of BP model network, NNw is weight network at rule condition, NNs is decision-making network of each status. Y out is final inference result which is to take subordinate degree as weight from NNw, to weight reflecting result from NNs and obtain status inference of monitoring system. In the process of machining, the acoustics-vibor signal were gotten by the acoustimeter and the acceleration piezoelectricity detector, the date is analysed by the signal processing software in time and frequency domain, then form multi feature parameter vector of criterion pattern samples for the different stage of cutting chatter and acoustics-vibra multi feature parameter vector. The vector can give a accurate and comprehensive description for the cutting process, and have the characteristic which are speediness of time domain and veracity of frequency domain. The research works have been practically applied in identification of tool wear, cutting chatter, experiment results showed that it is practicable to identify the cutting chatter based on fuzzy neural network, and the new method based on fuzzy neural network can be applied to other state identification in machining process. 展开更多
关键词 artificial neural network synthesis identification fuzzy inference on-line monitoring acoustics-vibra signal
下载PDF
Hybrid Designing of a Neural System by Combining Fuzzy Logical Framework and PSVM for Visual Haze-Free Task
17
作者 Hong Hu Liang Pang +1 位作者 Dongping Tian Zhongzhi Shi 《International Journal of Intelligence Science》 2013年第4期145-161,共17页
Brain-like computer research and development have been growing rapidly in recent years. It is necessary to design large scale dynamical neural networks (more than 106 neurons) to simulate complex process of our brain.... Brain-like computer research and development have been growing rapidly in recent years. It is necessary to design large scale dynamical neural networks (more than 106 neurons) to simulate complex process of our brain. But such kind of task is not easy to achieve only based on the analysis of partial differential equations, especially for those complex neural models, e.g. Rose-Hindmarsh (RH) model. So in this paper, we develop a novel approach by combining fuzzy logical designing with Proximal Support Vector Machine Classifiers (PSVM) learning in the designing of large scale neural networks. Particularly, our approach can effectively simplify the designing process, which is crucial for both cognition science and neural science. At last, we conduct our approach on an artificial neural system with more than 108 neurons for haze-free task, and the experimental results show that texture features extracted by fuzzy logic can effectively increase the texture information entropy and improve the effect of haze-removing in some degree. 展开更多
关键词 artificial BRAIN Research Brain-Like Computer fuzzy Logic neural network Machine Learning HOPFIELD neural network Bounded fuzzy Operator
下载PDF
The Contribution of Artificial Intelligence Tools in Screening for Cancer of the Cervix
18
作者 Guesmi Lamia Nabli Lotfi Bedoui Mohamed Hedi 《Computer Technology and Application》 2011年第6期479-486,共8页
Recently, research into pathological cytology were intended to put in places of artificial intelligence systems based on the development of new diagnostic technologies and the cell image segmentation. These technologi... Recently, research into pathological cytology were intended to put in places of artificial intelligence systems based on the development of new diagnostic technologies and the cell image segmentation. These technologies are not intended to substitute the human expert but to facilitate his task. The objective of this work is to develop a method for diagnosing cancer cervical smears using cervical-vaginal segmented to build the authors' database and a human supervisor and as an automatic tool manage and monitor the execution of the operation of diagnostic and proposing corrective actions if necessary. The Supervisor Smart is manufactured by the technique of neural networks with a success rate of 43.3% followed by the technique of fuzzy logic with a success rate equal to 56.7% and finally to improve this rate we used neuro-fuzzy approach which has a rate which reaches 94%. 展开更多
关键词 Cervical smear-vaginal (CSV) artificial intelligence SUPERVISOR fuzzy logic neural networks
下载PDF
A combined technique of Kalman filter, artificial neural network and fuzzy logic for gas turbines and signal fault isolation 被引量:8
19
作者 Simone TOGNI Theoklis NIKOLAIDIS Suresh SAMPATH 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第2期124-135,共12页
The target of this paper is the performance-based diagnostics of a gas turbine for the automated early detection of components malfunctions. The paper proposes a new combination of multiple methodologies for the perfo... The target of this paper is the performance-based diagnostics of a gas turbine for the automated early detection of components malfunctions. The paper proposes a new combination of multiple methodologies for the performance-based diagnostics of single and multiple failures on a two-spool engine. The aim of this technique is to combine the strength of each methodology and provide a high success rate for single and multiple failures with the presence of measurement malfunctions. A combination of KF(Kalman Filter), ANN(Artificial Neural Network) and FL(Fuzzy Logic) is used in this research in order to improve the success rate, to increase the flexibility and the number of failures detected and to combine the strength of multiple methods to have a more robust solution. The Kalman filter has in his strength the measurement noise treatment, the artificial neural network the simulation and prediction of reference and deteriorated performance profile and the fuzzy logic the categorization flexibility, which is used to quantify and classify the failures. In the area of GT(Gas Turbine) diagnostics, the multiple failures in combination with measurement issues and the utilization of multiple methods for a 2-spool industrial gas turbine engine has not been investigated extensively.This paper reports the key contribution of each component of the methodology and brief the results in the quantification and classification success rate. The methodology is tested for constant deterioration and increasing noise and for random deterioration. For the random deterioration and nominal noise of 0.4%, in particular, the quantification success rate is above 92.0%, while the classification success rate is above 95.1%. Moreover, the speed of the data processing(1.7 s/sample)proves the suitability of this methodology for online diagnostics. 展开更多
关键词 artificial neural network Data analytics Data filtering DIAGNOSTICS fuzzy logic Gas turbine Kalman filter Performance-based diagnostics
原文传递
基于人工智能算法的刀具磨损形貌预测研究现状
20
作者 周鑫 韩翠红 +1 位作者 曲周德 王井玲 《工具技术》 北大核心 2024年第5期11-21,共11页
磨损表面形貌能够反映运动副的磨损状态,通过对运动副表面磨损形貌进行研究分析,可以得到其磨损规律,预测磨损形貌变化。随着人工智能的快速发展以及在工程中的广泛应用,人工智能技术中的人工神经网络、模糊神经网络算法、遗传神经网络... 磨损表面形貌能够反映运动副的磨损状态,通过对运动副表面磨损形貌进行研究分析,可以得到其磨损规律,预测磨损形貌变化。随着人工智能的快速发展以及在工程中的广泛应用,人工智能技术中的人工神经网络、模糊神经网络算法、遗传神经网络算法、支持向量机和多目标粒子群优化算法等方法逐步应用于磨损表面形貌表征参数的预测,且具有较高的预测精度。本文主要介绍国内外利用人工智能技术对磨损表面形貌的研究现状,分析各种算法的优点和应用局限性。总结了人工智能技术在磨损表面形貌预测领域中亟待解决的关键难题以及未来的研究方向。 展开更多
关键词 人工神经网络 模糊神经网络算法 遗传神经网络算法 支持向量机 多项目粒子群优化算法
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部