This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization a...This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.展开更多
For acquiring high energy efficiency and the maximal throughput, a new time slot structure is designed for energy harvesting(EH) cognitive radio(CR). Considering the CR system with EH and cooperative relay, a best coo...For acquiring high energy efficiency and the maximal throughput, a new time slot structure is designed for energy harvesting(EH) cognitive radio(CR). Considering the CR system with EH and cooperative relay, a best cooperative mechanism(BCM)is proposed for CR with EH. To get the optimal estimation performance, a quantum fireworks algorithm(QFA) is designed to resolve the difficulties of maximal throughput and EH, and the proposed cooperative mechanism is called as QFA-BCM. The proposed QFA combines the advantages of quantum computation theory with the fireworks algorithm(FA). Thus the QFA is able to obtain the optimal solution and its convergence performance is proved. By using the new cooperation mechanism and computing algorithm, the proposed QFA-BCM method can achieve comparable maximal throughput in the new timeslot structure. Simulation results have proved that the QFA-BCM method is superior to previous non-cooperative and cooperative mechanisms.展开更多
Teachers are key participants in universities,and the performance appraisal of teacher is an important part of college work.By analyzing the data of behavior generated by different departments in university,analytic h...Teachers are key participants in universities,and the performance appraisal of teacher is an important part of college work.By analyzing the data of behavior generated by different departments in university,analytic hierarchy process(AHP) is used to establish the preliminary library of performance indicators for teachers,and the correlation among all the performance indicators is inspected by using data mining method at this time.On this basis,a more objective,comprehensive and scientific performance appraisal system is constructed through principal components analysis(PCA),which is more suitable for university itself.Finally,in order to solve the problems existed in current performance appraisal system,a dynamic evaluation model is put forward by regulating the weight of indicator according to the historical data,highlighting the continuity of the system.展开更多
A single strategy used in the firefly algorithm(FA)cannot effectively solve the complex optimal scheduling problem.Thus,we propose the FA with division of roles(DRFA).Herein,fireflies are divided into leaders,develope...A single strategy used in the firefly algorithm(FA)cannot effectively solve the complex optimal scheduling problem.Thus,we propose the FA with division of roles(DRFA).Herein,fireflies are divided into leaders,developers,and followers,while a learning strategy is assigned to each role:the leader chooses the greedy Cauchy mutation;the developer chooses two leaders randomly and uses the elite neighborhood search strategy for local development;the follower randomly selects two excellent particles for global exploration.To improve the efficiency of the fixed step size used in FA,a stepped variable step size strategy is proposed to meet different requirements of the algorithm for the step size at different stages.Role division can balance the development and exploration ability of the algorithm.The use of multiple strategies can greatly improve the versatility of the algorithm for complex optimization problems.The optimal performance of the proposed algorithm has been verified by three sets of test functions and a simulation of optimal scheduling of cascade reservoirs.展开更多
Firefly algorithm(FA)is a recently-proposed swarm intelligence technique.It has shown good performance in solving various optimization problems.According to the standard firefly algorithm and most of its variants,a fi...Firefly algorithm(FA)is a recently-proposed swarm intelligence technique.It has shown good performance in solving various optimization problems.According to the standard firefly algorithm and most of its variants,a firefly migrates to every other brighter firefly in each iteration.However,this method leads to defects of oscillations of positions,which hampers the convergence to the optimum.To address these problems and enhance the performance of FA,we propose a new firefly algorithm,which is called the Best Neighbor Firefly Algorithm(BNFA).It employs the best neighbor guided strategy,where each firefly is attracted to the best firefly among some randomly chosen neighbors,thus reducing the firefly oscillations in every attraction-induced migration stage,while increasing the probability of the guidance a new better direction.Moreover,it selects neighbors randomly to prevent the firefly form being trapped into a local optimum.Extensive experiments are conducted to find out the optimal parameter settings.To verify the performance of BNFA,13 classical benchmark functions are tested.Results show that BNFA outperforms the standard FA and other recently proposed modified FAs.展开更多
In this paper, a new algorithm which integrates the powerful firefly Mgorithm (FA) and the ant colony optimization (ACO) has been used in tracking control of ship steering for optimization of fractional-order prop...In this paper, a new algorithm which integrates the powerful firefly Mgorithm (FA) and the ant colony optimization (ACO) has been used in tracking control of ship steering for optimization of fractional-order proportional-integral-derivative (FOPID) controller gains. Particle swarm optimization (PSO) algorithm is also used to optimize FOPID controllers, and their performances are compared. It is found that FA optimized FOPID controller gives better performance than others. Sensitivity analysis has been carried out to see the robustness of optimum FOPID gains obtained at nominal conditions to wide changes in system parameters, and the optimum FOPID gains need not be reset for wide changes in system parameters.展开更多
In order to predict the coal outburst risk quickly and accurately,a PCA-FA-SVM based coal and gas outburst risk prediction model was designed.Principal component analysis(PCA)was used to pre-process the original data ...In order to predict the coal outburst risk quickly and accurately,a PCA-FA-SVM based coal and gas outburst risk prediction model was designed.Principal component analysis(PCA)was used to pre-process the original data samples,extract the principal components of the samples,use firefly algorithm(FA)to improve the support vector machine model,and compare and analyze the prediction results of PCA-FA-SVM model with BP model,FA-SVM model,FA-BP model and SVM model.Accuracy rate,recall rate,Macro-F1 and model prediction time were used as evaluation indexes.The results show that:Principal component analysis improves the prediction efficiency and accuracy of FA-SVM model.The accuracy rate of PCA-FA-SVM model predicting coal and gas outburst risk is 0.962,recall rate is 0.955,Macro-F1 is 0.957,and model prediction time is 0.312s.Compared with other models,The comprehensive performance of PCA-FA-SVM model is better.展开更多
基金This research was funded by the Faculty of Engineering,King Mongkut’s University of Technology North Bangkok.Contract No.ENG-NEW-66-39.
文摘This research introduces a novel approach to enhancing bucket elevator design and operation through the integration of discrete element method(DEM)simulation,design of experiments(DOE),and metaheuristic optimization algorithms.Specifically,the study employs the firefly algorithm(FA),a metaheuristic optimization technique,to optimize bucket elevator parameters for maximizing transport mass and mass flow rate discharge of granular materials under specified working conditions.The experimental methodology involves several key steps:screening experiments to identify significant factors affecting bucket elevator operation,central composite design(CCD)experiments to further explore these factors,and response surface methodology(RSM)to create predictive models for transport mass and mass flow rate discharge.The FA algorithm is then applied to optimize these models,and the results are validated through simulation and empirical experiments.The study validates the optimized parameters through simulation and empirical experiments,comparing results with DEM simulation.The outcomes demonstrate the effectiveness of the FA algorithm in identifying optimal bucket parameters,showcasing less than 10%and 15%deviation for transport mass and mass flow rate discharge,respectively,between predicted and actual values.Overall,this research provides insights into the critical factors influencing bucket elevator operation and offers a systematic methodology for optimizing bucket parameters,contributing to more efficient material handling in various industrial applications.
基金supported by the National Natural Science Foundation of China(61571149)the Special China Postdoctoral Science Foundation(2015T80325)+2 种基金the Heilongjiang Postdoctoral Fund(LBH-Z13054)the China Scholarship Council and the Fundamental Research Funds for the Central Universities(HEUCFP201772HEUCF160808)
文摘For acquiring high energy efficiency and the maximal throughput, a new time slot structure is designed for energy harvesting(EH) cognitive radio(CR). Considering the CR system with EH and cooperative relay, a best cooperative mechanism(BCM)is proposed for CR with EH. To get the optimal estimation performance, a quantum fireworks algorithm(QFA) is designed to resolve the difficulties of maximal throughput and EH, and the proposed cooperative mechanism is called as QFA-BCM. The proposed QFA combines the advantages of quantum computation theory with the fireworks algorithm(FA). Thus the QFA is able to obtain the optimal solution and its convergence performance is proved. By using the new cooperation mechanism and computing algorithm, the proposed QFA-BCM method can achieve comparable maximal throughput in the new timeslot structure. Simulation results have proved that the QFA-BCM method is superior to previous non-cooperative and cooperative mechanisms.
基金985 Construction Projects of Tongji,China(No.4218142801)
文摘Teachers are key participants in universities,and the performance appraisal of teacher is an important part of college work.By analyzing the data of behavior generated by different departments in university,analytic hierarchy process(AHP) is used to establish the preliminary library of performance indicators for teachers,and the correlation among all the performance indicators is inspected by using data mining method at this time.On this basis,a more objective,comprehensive and scientific performance appraisal system is constructed through principal components analysis(PCA),which is more suitable for university itself.Finally,in order to solve the problems existed in current performance appraisal system,a dynamic evaluation model is put forward by regulating the weight of indicator according to the historical data,highlighting the continuity of the system.
基金Project supported by the National Science and Technology Innovation 2030 Major Project of the Ministry of Science and Technology of China(No.2018AAA0101200)the National Natural Science Foundation of China(Nos.52069014 and 51669014)the Science Foundation for Distinguished Young Scholars of Jiangxi Province,China(No.2018ACB21029)。
文摘A single strategy used in the firefly algorithm(FA)cannot effectively solve the complex optimal scheduling problem.Thus,we propose the FA with division of roles(DRFA).Herein,fireflies are divided into leaders,developers,and followers,while a learning strategy is assigned to each role:the leader chooses the greedy Cauchy mutation;the developer chooses two leaders randomly and uses the elite neighborhood search strategy for local development;the follower randomly selects two excellent particles for global exploration.To improve the efficiency of the fixed step size used in FA,a stepped variable step size strategy is proposed to meet different requirements of the algorithm for the step size at different stages.Role division can balance the development and exploration ability of the algorithm.The use of multiple strategies can greatly improve the versatility of the algorithm for complex optimization problems.The optimal performance of the proposed algorithm has been verified by three sets of test functions and a simulation of optimal scheduling of cascade reservoirs.
基金Supported by the National Natural Science Foundation of China(61763019,61364025)the Science and Technology Foundation of Jiangxi Province,China(GJJ161076)
文摘Firefly algorithm(FA)is a recently-proposed swarm intelligence technique.It has shown good performance in solving various optimization problems.According to the standard firefly algorithm and most of its variants,a firefly migrates to every other brighter firefly in each iteration.However,this method leads to defects of oscillations of positions,which hampers the convergence to the optimum.To address these problems and enhance the performance of FA,we propose a new firefly algorithm,which is called the Best Neighbor Firefly Algorithm(BNFA).It employs the best neighbor guided strategy,where each firefly is attracted to the best firefly among some randomly chosen neighbors,thus reducing the firefly oscillations in every attraction-induced migration stage,while increasing the probability of the guidance a new better direction.Moreover,it selects neighbors randomly to prevent the firefly form being trapped into a local optimum.Extensive experiments are conducted to find out the optimal parameter settings.To verify the performance of BNFA,13 classical benchmark functions are tested.Results show that BNFA outperforms the standard FA and other recently proposed modified FAs.
基金the National Natural Science Foundation of China(No.51109090)the Natural Fund of Fujian Province(No.2015J01214)+2 种基金the Key Project of Fujian Provincial Department of Science & Technology(No.2012H0030)the University’s Innovative Project of Xiamen Science & Technology Bureau(No.3502Z20123019)the Project of New Century Excellent Talents of Colleges and Universities of Fujian Province(No.JA12181)
文摘In this paper, a new algorithm which integrates the powerful firefly Mgorithm (FA) and the ant colony optimization (ACO) has been used in tracking control of ship steering for optimization of fractional-order proportional-integral-derivative (FOPID) controller gains. Particle swarm optimization (PSO) algorithm is also used to optimize FOPID controllers, and their performances are compared. It is found that FA optimized FOPID controller gives better performance than others. Sensitivity analysis has been carried out to see the robustness of optimum FOPID gains obtained at nominal conditions to wide changes in system parameters, and the optimum FOPID gains need not be reset for wide changes in system parameters.
基金financially supported by the National Natural Science Foundation of China(52174117,52004117)Postdoctoral Science Foundation of China(2021T140290,2020M680975)Science and Technology Research Project of Liaoning Provincial Department of Education(LJ2020JCL005).
文摘In order to predict the coal outburst risk quickly and accurately,a PCA-FA-SVM based coal and gas outburst risk prediction model was designed.Principal component analysis(PCA)was used to pre-process the original data samples,extract the principal components of the samples,use firefly algorithm(FA)to improve the support vector machine model,and compare and analyze the prediction results of PCA-FA-SVM model with BP model,FA-SVM model,FA-BP model and SVM model.Accuracy rate,recall rate,Macro-F1 and model prediction time were used as evaluation indexes.The results show that:Principal component analysis improves the prediction efficiency and accuracy of FA-SVM model.The accuracy rate of PCA-FA-SVM model predicting coal and gas outburst risk is 0.962,recall rate is 0.955,Macro-F1 is 0.957,and model prediction time is 0.312s.Compared with other models,The comprehensive performance of PCA-FA-SVM model is better.