A novel adaptive digital image watermark algorithm is proposed. Fuzzy c-means clustering (FCM) is used to classify the original image blocks into two classes based on several characteristic parameters of human visua...A novel adaptive digital image watermark algorithm is proposed. Fuzzy c-means clustering (FCM) is used to classify the original image blocks into two classes based on several characteristic parameters of human visual system (HVS). One is suited for embedding a digital watermark, the other is not. So the appropriate blocks in an image are selected to embed the watermark. The wetermark is embedded in the middle-frequency part of the host image in conjunction with HVS and discrete cosine transform (DCT). The maximal watermark strength is fixed according to the frequency masking. In the same time, for the good performance, the watermark is modulated into a fractal modulation array. The simulation results show that we can remarkably extract the hiding watermark and the algorithm can achieve good robustness with common signal distortion or geometric distortion and the quality of the watermarked image is guaranteed.展开更多
In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage o...In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data.展开更多
For an airborne Iookdown radar, clutter power often changes dynamically about 80 dB with wide distributions as the platform moves. Therefore, clutter tracking techniques are required to guide the selection of const fa...For an airborne Iookdown radar, clutter power often changes dynamically about 80 dB with wide distributions as the platform moves. Therefore, clutter tracking techniques are required to guide the selection of const false alarm rate (CFAR) schemes. In this work, clutter tracking is done in image domain and an algorithm combining multifractal and fuzzy C-mean (FCM) cluster is proposed. The clutter with large dynamic distributions in power density is converted to steady distributions of multifractal exponents by the multifractal transformation with the optimum moment. Then, later, the main lobe and side lobe are tracked from the multifractal exponents by FCM clustering method.展开更多
In the field of magnetic tile surface detection, artificial detection efficiency is low, and the traditional image segmentation algorithm cannot show good performance when the gray scale of the magnetic tile itself is...In the field of magnetic tile surface detection, artificial detection efficiency is low, and the traditional image segmentation algorithm cannot show good performance when the gray scale of the magnetic tile itself is small, or the image is affected by uneven illumination. In view of these questions, this paper puts forward a new clustering segmentation algorithm based on texture feature. This algorithm uses Gabor function spectra to represent magnetic tile surface texture and then uses a user-defined local product coefficient to modify Gabor energy spectra to get the center number of fuzzy C-means(FCM) clustering. Moreover, the user-defined Gabor energy spectra image is segmented by clustering algorithm. Finally, it extracts the magnetic tile surface defects according to the changes of regional gray characteristics. Experiments show that the algorithm effectively overcomes the noise interference and makes a good performance on accuracy and robustness, which can effectively detect crack,damage, pit and other defects on the magnetic tile surface.展开更多
This paper presents an advanced fuzzy C-means(FCM) clustering algorithm to overcome the weakness of the traditional FCM algorithm, including the instability of random selecting of initial center and the limitation of ...This paper presents an advanced fuzzy C-means(FCM) clustering algorithm to overcome the weakness of the traditional FCM algorithm, including the instability of random selecting of initial center and the limitation of the data separation or the size of clusters. The advanced FCM algorithm combines the distance with density and improves the objective function so that the performance of the algorithm can be improved. The experimental results show that the proposed FCM algorithm requires fewer iterations yet provides higher accuracy than the traditional FCM algorithm. The advanced algorithm is applied to the influence of stars' box-office data, and the classification accuracy of the first class stars achieves 92.625%.展开更多
Aging of secondary organic aerosol(SOA) particles formed from OH– initiated oxidation of ethylbenzene in the presence of high mass(100–300 μg/m^3) concentrations of(NH_4)_2SO_4seed aerosol was investigated in...Aging of secondary organic aerosol(SOA) particles formed from OH– initiated oxidation of ethylbenzene in the presence of high mass(100–300 μg/m^3) concentrations of(NH_4)_2SO_4seed aerosol was investigated in a home-made smog chamber in this study.The chemical composition of aged ethylbenzene SOA particles was measured using an aerosol laser time-of-flight mass spectrometer(ALTOFMS) coupled with a Fuzzy C-Means(FCM) clustering algorithm.Experimental results showed that nitrophenol,ethyl-nitrophenol,2,4-dinitrophenol,methyl glyoxylic acid,5-ethyl-6-oxo-2,4-hexadienoic acid,2-ethyl-2,4-hexadiendioic acid,2,3-dihydroxy-5-ethyl-6-oxo-4-hexenoic acid,1H-imidazole,hydrated N-glyoxal substituted1H-imidazole,hydrated glyoxal dimer substituted imidazole,1H-imidazole-2-carbaldehyde,N-glyoxal substituted hydrated 1H-imidazole-2-carbaldehyde and high-molecular-weight(HMW) components were the predominant products in the aged particles.Compared to the previous aromatic SOA aging studies,imidazole compounds,which can absorb solar radiation effectively,were newly detected in aged ethylbenzene SOA in the presence of high concentrations of(NH_4)_2SO_4seed aerosol.These findings provide new information for discussing aromatic SOA aging mechanisms.展开更多
A personalized emotion space is proposed to bridge the "affective gap" in video affective content understanding. In order to unify the discrete and dimensional emotion model, fuzzy C-mean (FCM) clustering algorith...A personalized emotion space is proposed to bridge the "affective gap" in video affective content understanding. In order to unify the discrete and dimensional emotion model, fuzzy C-mean (FCM) clustering algorithm is adopted to divide the emotion space. Gaussian mixture model (GMM) is used to determine the membership functions of typical affective subspaces. At every step of modeling the space, the inputs rely completely on the affective experiences recorded by the audiences. The advantages of the improved V-A (Velance-Arousal) emotion model are the per- sonalization, the ability to define typical affective state areas in the V-A emotion space, and the convenience to explicitly express the intensity of each affective state. The experimental results validate the model and show it can be used as a personalized emotion space for video affective content representation.展开更多
基金Supported by the National Natural Science Foundation ofChina (10571127) the Doctoral Foundation of the Ministry of Educationof China (20040610004)
文摘A novel adaptive digital image watermark algorithm is proposed. Fuzzy c-means clustering (FCM) is used to classify the original image blocks into two classes based on several characteristic parameters of human visual system (HVS). One is suited for embedding a digital watermark, the other is not. So the appropriate blocks in an image are selected to embed the watermark. The wetermark is embedded in the middle-frequency part of the host image in conjunction with HVS and discrete cosine transform (DCT). The maximal watermark strength is fixed according to the frequency masking. In the same time, for the good performance, the watermark is modulated into a fractal modulation array. The simulation results show that we can remarkably extract the hiding watermark and the algorithm can achieve good robustness with common signal distortion or geometric distortion and the quality of the watermarked image is guaranteed.
基金Supported by the University Doctorate Special Research Fund (No. 20030614001) and the Youth Scholarship Leader Fund of Univ. of Electro. Sci. and Tech. of China.
文摘In this letter, a new method is proposed for unsupervised classification of terrain types and man-made objects using POLarimetric Synthetic Aperture Radar (POLSAR) data. This technique is a combi-nation of the usage of polarimetric information of SAR images and the unsupervised classification method based on fuzzy set theory. Image quantization and image enhancement are used to preprocess the POLSAR data. Then the polarimetric information and Fuzzy C-Means (FCM) clustering algorithm are used to classify the preprocessed images. The advantages of this algorithm are the automated classification, its high classifica-tion accuracy, fast convergence and high stability. The effectiveness of this algorithm is demonstrated by ex-periments using SIR-C/X-SAR (Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar) data.
基金This work was supported by the Aeronautical Science Foundation of China under Grand No. 04D52032.
文摘For an airborne Iookdown radar, clutter power often changes dynamically about 80 dB with wide distributions as the platform moves. Therefore, clutter tracking techniques are required to guide the selection of const false alarm rate (CFAR) schemes. In this work, clutter tracking is done in image domain and an algorithm combining multifractal and fuzzy C-mean (FCM) cluster is proposed. The clutter with large dynamic distributions in power density is converted to steady distributions of multifractal exponents by the multifractal transformation with the optimum moment. Then, later, the main lobe and side lobe are tracked from the multifractal exponents by FCM clustering method.
基金the National Natural Science Foundation of China(Nos.51307003 and 61601004)
文摘In the field of magnetic tile surface detection, artificial detection efficiency is low, and the traditional image segmentation algorithm cannot show good performance when the gray scale of the magnetic tile itself is small, or the image is affected by uneven illumination. In view of these questions, this paper puts forward a new clustering segmentation algorithm based on texture feature. This algorithm uses Gabor function spectra to represent magnetic tile surface texture and then uses a user-defined local product coefficient to modify Gabor energy spectra to get the center number of fuzzy C-means(FCM) clustering. Moreover, the user-defined Gabor energy spectra image is segmented by clustering algorithm. Finally, it extracts the magnetic tile surface defects according to the changes of regional gray characteristics. Experiments show that the algorithm effectively overcomes the noise interference and makes a good performance on accuracy and robustness, which can effectively detect crack,damage, pit and other defects on the magnetic tile surface.
文摘This paper presents an advanced fuzzy C-means(FCM) clustering algorithm to overcome the weakness of the traditional FCM algorithm, including the instability of random selecting of initial center and the limitation of the data separation or the size of clusters. The advanced FCM algorithm combines the distance with density and improves the objective function so that the performance of the algorithm can be improved. The experimental results show that the proposed FCM algorithm requires fewer iterations yet provides higher accuracy than the traditional FCM algorithm. The advanced algorithm is applied to the influence of stars' box-office data, and the classification accuracy of the first class stars achieves 92.625%.
基金supported by the National Natural Science Foundation of China (Nos.41575118,41305109,21502086,41575126)the Outstanding Youth Science Foundation of Fujian Province of China (No.2015J06009)the Natural Science Foundation of Fujian Province of China (No.2015J05028)
文摘Aging of secondary organic aerosol(SOA) particles formed from OH– initiated oxidation of ethylbenzene in the presence of high mass(100–300 μg/m^3) concentrations of(NH_4)_2SO_4seed aerosol was investigated in a home-made smog chamber in this study.The chemical composition of aged ethylbenzene SOA particles was measured using an aerosol laser time-of-flight mass spectrometer(ALTOFMS) coupled with a Fuzzy C-Means(FCM) clustering algorithm.Experimental results showed that nitrophenol,ethyl-nitrophenol,2,4-dinitrophenol,methyl glyoxylic acid,5-ethyl-6-oxo-2,4-hexadienoic acid,2-ethyl-2,4-hexadiendioic acid,2,3-dihydroxy-5-ethyl-6-oxo-4-hexenoic acid,1H-imidazole,hydrated N-glyoxal substituted1H-imidazole,hydrated glyoxal dimer substituted imidazole,1H-imidazole-2-carbaldehyde,N-glyoxal substituted hydrated 1H-imidazole-2-carbaldehyde and high-molecular-weight(HMW) components were the predominant products in the aged particles.Compared to the previous aromatic SOA aging studies,imidazole compounds,which can absorb solar radiation effectively,were newly detected in aged ethylbenzene SOA in the presence of high concentrations of(NH_4)_2SO_4seed aerosol.These findings provide new information for discussing aromatic SOA aging mechanisms.
基金Supported by the National Natural Science Foundation of China (60703049)the "Chenguang" Foundation for Young Scientists (200850731353)the National Postdoctoral Foundation of China (20060400847)
文摘A personalized emotion space is proposed to bridge the "affective gap" in video affective content understanding. In order to unify the discrete and dimensional emotion model, fuzzy C-mean (FCM) clustering algorithm is adopted to divide the emotion space. Gaussian mixture model (GMM) is used to determine the membership functions of typical affective subspaces. At every step of modeling the space, the inputs rely completely on the affective experiences recorded by the audiences. The advantages of the improved V-A (Velance-Arousal) emotion model are the per- sonalization, the ability to define typical affective state areas in the V-A emotion space, and the convenience to explicitly express the intensity of each affective state. The experimental results validate the model and show it can be used as a personalized emotion space for video affective content representation.