期刊文献+
共找到510篇文章
< 1 2 26 >
每页显示 20 50 100
Prediction of Uncertainty Estimation and Confidence Calibration Using Fully Convolutional Neural Network
1
作者 Karim Gasmi Lassaad Ben Ammar +1 位作者 Hmoud Elshammari Fadwa Yahya 《Computers, Materials & Continua》 SCIE EI 2023年第5期2557-2573,共17页
Convolution neural networks(CNNs)have proven to be effective clinical imagingmethods.This study highlighted some of the key issues within these systems.It is difficult to train these systems in a limited clinical imag... Convolution neural networks(CNNs)have proven to be effective clinical imagingmethods.This study highlighted some of the key issues within these systems.It is difficult to train these systems in a limited clinical image databases,and many publications present strategies including such learning algorithm.Furthermore,these patterns are known formaking a highly reliable prognosis.In addition,normalization of volume and losses of dice have been used effectively to accelerate and stabilize the training.Furthermore,these systems are improperly regulated,resulting in more confident ratings for correct and incorrect classification,which are inaccurate and difficult to understand.This study examines the risk assessment of Fully Convolutional Neural Networks(FCNNs)for clinical image segmentation.Essential contributions have been made to this planned work:1)dice loss and cross-entropy loss are compared on the basis of segment quality and uncertain assessment of FCNNs;2)proposal for a group model for assurance measurement of full convolutional neural networks trained with dice loss and group normalization;And 3)the ability of the measured FCNs to evaluate the segment quality of the structures and to identify test examples outside the distribution.To evaluate the study’s contributions,it conducted a series of tests in three clinical image division applications such as heart,brain and prostate.The findings of the study provide significant insights into the predictive ambiguity assessment and a practical strategies for outside-distribution identification and reliable measurement in the clinical image segmentation.The approaches presented in this research significantly enhance the reliability and accuracy rating of CNNbased clinical imaging methods. 展开更多
关键词 Medical image SEGMENTATION confidence calibration uncertainty estimation fully convolutional neural network
下载PDF
Accurate and Robust Eye Center Localization via Fully Convolutional Networks 被引量:7
2
作者 Yifan Xia Hui Yu Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第5期1127-1138,共12页
Eye center localization is one of the most crucial and basic requirements for some human-computer interaction applications such as eye gaze estimation and eye tracking. There is a large body of works on this topic in ... Eye center localization is one of the most crucial and basic requirements for some human-computer interaction applications such as eye gaze estimation and eye tracking. There is a large body of works on this topic in recent years, but the accuracy still needs to be improved due to challenges in appearance such as the high variability of shapes, lighting conditions, viewing angles and possible occlusions. To address these problems and limitations, we propose a novel approach in this paper for the eye center localization with a fully convolutional network(FCN),which is an end-to-end and pixels-to-pixels network and can locate the eye center accurately. The key idea is to apply the FCN from the object semantic segmentation task to the eye center localization task since the problem of eye center localization can be regarded as a special semantic segmentation problem. We adapt contemporary FCN into a shallow structure with a large kernel convolutional block and transfer their performance from semantic segmentation to the eye center localization task by fine-tuning.Extensive experiments show that the proposed method outperforms the state-of-the-art methods in both accuracy and reliability of eye center localization. The proposed method has achieved a large performance improvement on the most challenging database and it thus provides a promising solution to some challenging applications. 展开更多
关键词 DEEP learning eye CENTER LOCALIZATION eye GAZE estimation eye TRACKING fully convolutional network (fcn) humancomputer interaction
下载PDF
Segmentation of retinal fluid based on deep learning:application of three-dimensional fully convolutional neural networks in optical coherence tomography images 被引量:3
3
作者 Meng-Xiao Li Su-Qin Yu +4 位作者 Wei Zhang Hao Zhou Xun Xu Tian-Wei Qian Yong-Jing Wan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2019年第6期1012-1020,共9页
AIM: To explore a segmentation algorithm based on deep learning to achieve accurate diagnosis and treatment of patients with retinal fluid.METHODS: A two-dimensional(2D) fully convolutional network for retinal segment... AIM: To explore a segmentation algorithm based on deep learning to achieve accurate diagnosis and treatment of patients with retinal fluid.METHODS: A two-dimensional(2D) fully convolutional network for retinal segmentation was employed. In order to solve the category imbalance in retinal optical coherence tomography(OCT) images, the network parameters and loss function based on the 2D fully convolutional network were modified. For this network, the correlations of corresponding positions among adjacent images in space are ignored. Thus, we proposed a three-dimensional(3D) fully convolutional network for segmentation in the retinal OCT images.RESULTS: The algorithm was evaluated according to segmentation accuracy, Kappa coefficient, and F1 score. For the 3D fully convolutional network proposed in this paper, the overall segmentation accuracy rate is 99.56%, Kappa coefficient is 98.47%, and F1 score of retinal fluid is 95.50%. CONCLUSION: The OCT image segmentation algorithm based on deep learning is primarily founded on the 2D convolutional network. The 3D network architecture proposed in this paper reduces the influence of category imbalance, realizes end-to-end segmentation of volume images, and achieves optimal segmentation results. The segmentation maps are practically the same as the manual annotations of doctors, and can provide doctors with more accurate diagnostic data. 展开更多
关键词 optical COHERENCE tomography IMAGES FLUID segmentation 2D fully convolutional network 3D fully convolutional network
下载PDF
Intelligent Detection Model Based on a Fully Convolutional Neural Network for Pavement Cracks 被引量:2
4
作者 Duo Ma Hongyuan Fang +3 位作者 Binghan Xue Fuming Wang Mohammed AMsekh Chiu Ling Chan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第6期1267-1291,共25页
The crack is a common pavement failure problem.A lack of periodic maintenance will result in extending the cracks and damage the pavement,which will affect the normal use of the road.Therefore,it is significant to est... The crack is a common pavement failure problem.A lack of periodic maintenance will result in extending the cracks and damage the pavement,which will affect the normal use of the road.Therefore,it is significant to establish an efficient intelligent identification model for pavement cracks.The neural network is a method of simulating animal nervous systems using gradient descent to predict results by learning a weight matrix.It has been widely used in geotechnical engineering,computer vision,medicine,and other fields.However,there are three major problems in the application of neural networks to crack identification.There are too few layers,extracted crack features are not complete,and the method lacks the efficiency to calculate the whole picture.In this study,a fully convolutional neural network based on ResNet-101 is used to establish an intelligent identification model of pavement crack regions.This method,using a convolutional layer instead of a fully connected layer,realizes full convolution and accelerates calculation.The region proposals come from the feature map at the end of the base network,which avoids multiple computations of the same picture.Online hard example mining and data-augmentation techniques are adopted to improve the model’s recognition accuracy.We trained and tested Concrete Crack Images for Classification(CCIC),which is a public dataset collected using smartphones,and the Crack Image Database(CIDB),which was automatically collected using vehicle-mounted charge-coupled device cameras,with identification accuracy reaching 91.4%and 86.4%,respectively.The proposed model has a higher recognition accuracy and recall rate than Faster RCNN and different depth models,and can extract more complete and accurate crack features in CIDB.We also analyzed translation processing,fuzzy,scaling,and distorted images.The proposed model shows a strong robustness and stability,and can automatically identify image cracks of different forms.It has broad application prospects in practical engineering problems. 展开更多
关键词 fully convolutional neural network pavement crack intelligent detection crack image database
下载PDF
Fully Convolutional Networks for Street Furniture Identification in Panorama Images 被引量:3
5
作者 Ying AO Penglong LI +2 位作者 Li WEN Tao ZHANG Yanwen WANG 《Journal of Geodesy and Geoinformation Science》 2022年第4期59-71,共13页
Panoramic images are widely used in many scenes,especially in virtual reality and street view capture.However,they are new for street furniture identification which is usually based on mobile laser scanning point clou... Panoramic images are widely used in many scenes,especially in virtual reality and street view capture.However,they are new for street furniture identification which is usually based on mobile laser scanning point cloud data or conventional 2D images.This study proposes to perform semantic segmentation on panoramic images and transformed images to separate light poles and traffic signs from background implemented by pre-trained Fully Convolutional Networks(FCN).FCN is the most important model for deep learning applied on semantic segmentation for its end to end training process and pixel-wise prediction.In this study,we use FCN-8s model that pre-trained on cityscape dataset and finetune it by our own data.Then replace cross entropy loss function with focal loss function in the FCN model and train it again to produce the predictions.The results show that in all results from pre-trained model,fine-tuning,and FCN model with focal loss,the light poles and traffic signs are detected well and the transformed images have better performance than panoramic images in the prediction according to the Recall and IoU evaluation. 展开更多
关键词 panoramic images semantic segmentation street furniture object identification fully convolutional networks
下载PDF
Automated Delineation of Smallholder Farm Fields Using Fully Convolutional Networks and Generative Adversarial Networks 被引量:1
6
作者 Qiuyu YAN Wufan ZHAO +1 位作者 Xiao HUANG Xianwei LYU 《Journal of Geodesy and Geoinformation Science》 2022年第4期10-22,共13页
Accurate boundaries of smallholder farm fields are important and indispensable geo-information that benefits farmers,managers,and policymakers in terms of better managing and utilizing their agricultural resources.Due... Accurate boundaries of smallholder farm fields are important and indispensable geo-information that benefits farmers,managers,and policymakers in terms of better managing and utilizing their agricultural resources.Due to their small size,irregular shape,and the use of mixed-cropping techniques,the farm fields of smallholder can be difficult to delineate automatically.In recent years,numerous studies on field contour extraction using a deep Convolutional Neural Network(CNN)have been proposed.However,there is a relative shortage of labeled data for filed boundaries,thus affecting the training effect of CNN.Traditional methods mostly use image flipping,and random rotation for data augmentation.In this paper,we propose to apply Generative Adversarial Network(GAN)for the data augmentation of farm fields label to increase the diversity of samples.Specifically,we propose an automated method featured by Fully Convolutional Neural networks(FCN)in combination with GAN to improve the delineation accuracy of smallholder farms from Very High Resolution(VHR)images.We first investigate four State-Of-The-Art(SOTA)FCN architectures,i.e.,U-Net,PSPNet,SegNet and OCRNet,to find the optimal architecture in the contour detection task of smallholder farm fields.Second,we apply the identified optimal FCN architecture in combination with Contour GAN and pixel2pixel GAN to improve the accuracy of contour detection.We test our method on the study area in the Sudano-Sahelian savanna region of northern Nigeria.The best combination achieved F1 scores of 0.686 on Test Set 1(TS1),0.684 on Test Set 2(TS2),and 0.691 on Test Set 3(TS3).Results indicate that our architecture adapts to a variety of advanced networks and proves its effectiveness in this task.The conceptual,theoretical,and experimental knowledge from this study is expected to seed many GAN-based farm delineation methods in the future. 展开更多
关键词 field boundary contour detection fully convolutional neural networks generative adversarial networks
下载PDF
A Fully Convolutional Neural Network-based Regression Approach for Effective Chemical Composition Analysis Using Near-infrared Spectroscopy in Cloud 被引量:5
7
作者 Daiyu Jiang Gang Hu +1 位作者 Guanqiu Qi Neal Mazur 《Journal of Artificial Intelligence and Technology》 2021年第1期74-82,共9页
As one chemical composition,nicotine content has an important influence on the quality of tobacco leaves.Rapid and nondestructive quantitative analysis of nicotine is an important task in the tobacco industry.Near-inf... As one chemical composition,nicotine content has an important influence on the quality of tobacco leaves.Rapid and nondestructive quantitative analysis of nicotine is an important task in the tobacco industry.Near-infrared(NIR)spectroscopy as an effective chemical composition analysis technique has been widely used.In this paper,we propose a one-dimensional fully convolutional network(1D-FCN)model to quantitatively analyze the nicotine composition of tobacco leaves using NIR spectroscopy data in a cloud environment.This 1D-FCN model uses one-dimensional convolution layers to directly extract the complex features from sequential spectroscopy data.It consists of five convolutional layers and two full connection layers with the max-pooling layer replaced by a convolutional layer to avoid information loss.Cloud computing techniques are used to solve the increasing requests of large-size data analysis and implement data sharing and accessing.Experimental results show that the proposed 1D-FCN model can effectively extract the complex characteristics inside the spectrum and more accurately predict the nicotine volumes in tobacco leaves than other approaches.This research provides a deep learning foundation for quantitative analysis of NIR spectral data in the tobacco industry. 展开更多
关键词 NICOTINE tobacco leaves near-infrared spectroscopy fully convolutional network cloud computing
下载PDF
Reconstructing the 3D digital core with a fully convolutional neural network
8
作者 Li Qiong Chen Zheng +4 位作者 He Jian-Jun Hao Si-Yu Wang Rui Yang Hao-Tao Sun Hua-Jun 《Applied Geophysics》 SCIE CSCD 2020年第3期401-410,共10页
In this paper, the complete process of constructing 3D digital core by fullconvolutional neural network is described carefully. A large number of sandstone computedtomography (CT) images are used as training input for... In this paper, the complete process of constructing 3D digital core by fullconvolutional neural network is described carefully. A large number of sandstone computedtomography (CT) images are used as training input for a fully convolutional neural networkmodel. This model is used to reconstruct the three-dimensional (3D) digital core of Bereasandstone based on a small number of CT images. The Hamming distance together with theMinkowski functions for porosity, average volume specifi c surface area, average curvature,and connectivity of both the real core and the digital reconstruction are used to evaluate theaccuracy of the proposed method. The results show that the reconstruction achieved relativeerrors of 6.26%, 1.40%, 6.06%, and 4.91% for the four Minkowski functions and a Hammingdistance of 0.04479. This demonstrates that the proposed method can not only reconstructthe physical properties of real sandstone but can also restore the real characteristics of poredistribution in sandstone, is the ability to which is a new way to characterize the internalmicrostructure of rocks. 展开更多
关键词 fully convolutional neural network 3D digital core numerical simulation training set
下载PDF
基于LSTM-SAFCN模型的生物质锅炉NO_(x)排放浓度预测
9
作者 何德峰 刘明裕 +2 位作者 孙芷菲 王秀丽 李廉明 《高技术通讯》 CAS 北大核心 2024年第1期92-100,共9页
针对生物质锅炉燃烧过程的动态特性,提出一种改进的长短期记忆-自注意力机制全卷积神经网络(LSTM-SAFCN)模型用于预测NO_(x)排放浓度。首先利用完全自适应噪声集合经验模态分解法(CEEMDAN)对数据进行预处理,消除数据噪声对NO_(x)排放浓... 针对生物质锅炉燃烧过程的动态特性,提出一种改进的长短期记忆-自注意力机制全卷积神经网络(LSTM-SAFCN)模型用于预测NO_(x)排放浓度。首先利用完全自适应噪声集合经验模态分解法(CEEMDAN)对数据进行预处理,消除数据噪声对NO_(x)排放浓度预测的影响;其次融合自注意力机制与长短时记忆-全卷积神经网络(LSTM-FCN)进行特征提取与预测建模,该拓展方法能够同时兼顾时间序列数据的局部细节与长期趋势特征;最后,利用生物质热电联产系统的实际运行数据验证了所提算法的有效性。 展开更多
关键词 生物质锅炉 NO_(x)排放浓度预测 经验模态分解 长短时记忆-全卷积神经网络(LSTM-fcn) 自注意力机制
下载PDF
嵌入NLB模块的FCN在轴承信号降噪中的应用
10
作者 范啸宇 刘韬 +2 位作者 王振亚 陶佳 朱振军 《电子测量与仪器学报》 CSCD 北大核心 2024年第4期55-65,共11页
深度学习在故障诊断取得了显著的进展,然而其多为端到端的智能诊断,在信号降噪方面的应用较少。本文提出了一种基于全卷积神经网络(fully convolutional network,FCN)的降噪方法。首先,模型整体采用了encoder-decoder架构,其中encoder... 深度学习在故障诊断取得了显著的进展,然而其多为端到端的智能诊断,在信号降噪方面的应用较少。本文提出了一种基于全卷积神经网络(fully convolutional network,FCN)的降噪方法。首先,模型整体采用了encoder-decoder架构,其中encoder部分由三层卷积层组成,decoder部分由四层反卷积层组成。其次,引入了残差连接对模型的学习目标进行了约束,使得模型在传播过程中更多地关注噪声信息。并且为了增强模型的特征提取能力,在encoder和decoder中引入了非局部块(non-local block,NLB)。然后,通过仿真信号对比实验选择网络的超参数,与目前主流的降噪方法进行对比,初步验证模型的降噪效果。最后,通过实际案例对所提方法的降噪效果进行对比验证,结果表明本文提出的方法在直观观察和降噪性能指标方面均取得了良好的应用效果,能够有效提高故障诊断的准确率。 展开更多
关键词 全卷积神经网络 残差连接 反卷积 降噪 故障诊断
下载PDF
基于改进FCN的肺炎图像分割方法
11
作者 邹显迪 何小利 +2 位作者 余谦 龙源 张博 《齐齐哈尔大学学报(自然科学版)》 2024年第4期5-10,共6页
针对胸部X射线影像中肺炎病灶识别工作量大,结果不够精准等问题,提出一种基于改进FCN的肺炎病灶图像分割方法。首先,构建Pascal数据集格式的健康肺部影像和感染肺炎影像的数据集。其次,对比不同ResNet网络和传统VGG网络训练损失的收敛... 针对胸部X射线影像中肺炎病灶识别工作量大,结果不够精准等问题,提出一种基于改进FCN的肺炎病灶图像分割方法。首先,构建Pascal数据集格式的健康肺部影像和感染肺炎影像的数据集。其次,对比不同ResNet网络和传统VGG网络训练损失的收敛速度。然后使用效果最好的ResNet50网络代替经典FCN算法中VGG网络作为主干网络,并提出一种多尺度特征提取模块,最后将改进的FCN网络与传统FCN网络、LR-ASPP、DEEPLAB-V3进行对比,改进的FCN网络较其他方法得到了更好的效果。实验结果表明,改进的FCN网络可以精准分割胸部X射线中各种形状和大小的肺炎病灶,分割效果良好,可以为临床的肺炎诊断提供可靠依据。 展开更多
关键词 fcn 图像处理 语义分割 膨胀卷积 多尺度提取 残差网络
下载PDF
Concurrent channel and spatial attention in Fully Convolutional Network for individual pig image segmentation 被引量:1
12
作者 Zhiwei Hu Hua Yang +1 位作者 Tiantian Lou Hongwen Yan 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2023年第1期232-242,共11页
The separation of individual pigs from the pigpen scenes is crucial for precision farming,and the technology based on convolutional neural networks can provide a low-cost,non-contact,non-invasive method of pig image s... The separation of individual pigs from the pigpen scenes is crucial for precision farming,and the technology based on convolutional neural networks can provide a low-cost,non-contact,non-invasive method of pig image segmentation.However,two factors limit the development of this field.On the one hand,the individual pigs are easy to stick together,and the occlusion of debris such as pigpens can easily make the model misjudgment.On the other hand,manual labeling of group-raised pig data is time-consuming and labor-intensive and is prone to labeling errors.Therefore,it is urgent for an individual pig image segmentation model that can perform well in individual scenarios and can be easily migrated to a group-raised environment.In order to solve the above problems,taking individual pigs as research objects,an individual pig image segmentation dataset containing 2066 images was constructed,and a series of algorithms based on fully convolutional networks were proposed to solve the pig image segmentation problem.In order to capture the long-range dependencies and weaken the background information such as pigpens while enhancing the information of individual parts of pigs,the channel and spatial attention blocks were introduced into the best-performing decoders UNet and LinkNet.Experiments show that using ResNext50 as the encoder and Unet as the decoder as the basic model,adding two attention blocks at the same time achieves 98.30%and 96.71%on the F1 and IOU metrics,respectively.Compared with the model adding channel attention block alone,the two metrics are improved by 0.13%and 0.22%,respectively.The experiment of introducing channel and spatial attention alone shows that spatial attention is more effective than channel attention.Taking VGG16-LinkNet as an example,compared with channel attention,spatial attention improves the F1 and IOU metrics by 0.16%and 0.30%,respectively.Furthermore,the heatmap of the feature of different layers of the decoder after adding different attention information proves that with the increase of layers,the boundary of pig image segmentation is clearer.In order to verify the effectiveness of the individual pig image segmentation model in group-raised scenes,the transfer performance of the model is verified in three scenarios of high separation,deep adhesion,and pigpen occlusion.The experiments show that the segmentation results of adding attention information,especially the simultaneous fusion of channel and spatial attention blocks,are more refined and complete.The attention-based individual pig image segmentation model can be effectively transferred to the field of group-raised pigs and can provide a reference for its pre-segmentation. 展开更多
关键词 PIG image segmentation fully convolutional network(fcn) attention mechanism channel and spatial attention
原文传递
基于R-FCN区域全卷积网络的绝缘子红外图像识别研究 被引量:7
13
作者 丁国君 范开元 +2 位作者 李一航 平原 崔耀辉 《自动化技术与应用》 2023年第11期147-150,183,共5页
红外热成像因其具有非接触性、灵敏性等优点,已被广泛应用于电力设备的带电检测及其诊断中。其中,对设备快速精确地识别定位是电力设备智能诊断的关键。然而利用传统机器算法对电力设备图像进行识别定位,存在泛化能力不强、鲁棒性较差... 红外热成像因其具有非接触性、灵敏性等优点,已被广泛应用于电力设备的带电检测及其诊断中。其中,对设备快速精确地识别定位是电力设备智能诊断的关键。然而利用传统机器算法对电力设备图像进行识别定位,存在泛化能力不强、鲁棒性较差等不足。针对此问题,开展基于R-FCN区域全卷积网络的绝缘子红外图像识别研究。在TensorFlow框架下搭建R-FCN检测模型,并利用迁移学习方法初始化模型权重,以提高训练效果。最后,将所研究算法与Faster-RCNN和SSD模型进行对比。实验表明,R-FCN模型的检测精度为89.2%,检测速度为23 fps,具有较高的精度和速度。该算法为绝缘子的智能诊断奠定坚实基础。 展开更多
关键词 绝缘子 区域全卷积网络 R-fcn模型 红外图像
下载PDF
基于LSTM-FCN神经网络的船舶电力系统故障识别方法 被引量:2
14
作者 彭凤健 牟龙华 +2 位作者 方重凯 庄伟 代建 《船电技术》 2023年第10期67-73,共7页
船舶电力系统拓扑结构日趋复杂,故障种类繁多且不易区分。为确保继电保护动作的正确性,本文基于船舶电力系统故障录波数据,利用全卷积网络(Fully Convolutional Network,FCN)在局部特征提取上的优势,以及长短期记忆网络(Long Short-Term... 船舶电力系统拓扑结构日趋复杂,故障种类繁多且不易区分。为确保继电保护动作的正确性,本文基于船舶电力系统故障录波数据,利用全卷积网络(Fully Convolutional Network,FCN)在局部特征提取上的优势,以及长短期记忆网络(Long Short-Term Memory,LSTM)在时序特征提取上的优势,提出了一种基于改进LSTM-FCN网络的故障诊断模型,并应用于船舶电力系统故障识别。依托PSCAD/EMTDC仿真软件对典型船舶电力系统各种故障进行仿真,通过小波变换对采样信号进行预处理。实验结果表明:本文所提出的故障诊断模型能够很好地对船舶电力系统故障进行分类识别。 展开更多
关键词 船舶电力系统 故障识别 全卷积网络 长短期记忆网络
下载PDF
基于FCN不确定性特征的铁路入侵异物检测算法 被引量:2
15
作者 胡行涛 刘大明 虞发桐 《计算机应用与软件》 北大核心 2023年第4期141-146,共6页
为了提高全卷积神经网络(Fully Convolutional Networks,FCN)算法检测异物的精确度,提出一种基于FCN不确定特征的铁路入侵异物检测算法。将检测的不确定性这一自然属性添加到检测系统中,同时为了减少卷积过程中引起的图像伪影现象,提出... 为了提高全卷积神经网络(Fully Convolutional Networks,FCN)算法检测异物的精确度,提出一种基于FCN不确定特征的铁路入侵异物检测算法。将检测的不确定性这一自然属性添加到检测系统中,同时为了减少卷积过程中引起的图像伪影现象,提出一种新的混合下采样方法。实验证明,该算法可以有效地提高FCN异物检测的精确度,算法的PR曲线、F-measure和平均绝对误差(Mean Absolute Error,MAE)均优于现有的算法。 展开更多
关键词 全卷积神经网络 不确定性 混合下采样 异物检测
下载PDF
ResCD-FCN:Semantic Scene Change Detection Using Deep Neural Networks
16
作者 S.Eliza Femi Sherley J.M.Karthikeyan +3 位作者 N.Bharath Raj R.Prabakaran A.Abinaya S.V.V.Lakshmi 《Journal on Artificial Intelligence》 2022年第4期215-227,共13页
Semantic change detection is extension of change detection task in which it is not only used to identify the changed regions but also to analyze the land area semantic(labels/categories)details before and after the ti... Semantic change detection is extension of change detection task in which it is not only used to identify the changed regions but also to analyze the land area semantic(labels/categories)details before and after the timelines are analyzed.Periodical land change analysis is used for many real time applications for valuation purposes.Majority of the research works are focused on Convolutional Neural Networks(CNN)which tries to analyze changes alone.Semantic information of changes appears to be missing,there by absence of communication between the different semantic timelines and changes detected over the region happens.To overcome this limitation,a CNN network is proposed incorporating the Resnet-34 pre-trained model on Fully Convolutional Network(FCN)blocks for exploring the temporal data of satellite images in different timelines and change map between these two timelines are analyzed.Further this model achieves better results by analyzing the semantic information between the timelines and based on localized information collected from skip connections which help in generating a better change map with the categories that might have changed over a land area across timelines.Proposed model effectively examines the semantic changes such as from-to changes on land over time period.The experimental results on SECOND(Semantic Change detectiON Dataset)indicates that the proposed model yields notable improvement in performance when it is compared with the existing approaches and this also improves the semantic segmentation task on images over different timelines and the changed areas of land area across timelines. 展开更多
关键词 Remote sensing convolutional neural network semantic segmentation change detection semantic change detection resnet fcn
下载PDF
基于全卷积网络的复杂背景红外弱小目标检测研究
17
作者 关晓丹 郑东平 肖成 《激光杂志》 CAS 北大核心 2024年第4期254-258,共5页
针对复杂背景红外弱小目标检测过程中存在的检测误差率高,检测时间过长等问题,提出基于全卷积网络的复杂背景红外弱小目标检测方法。分析复杂背景红外弱小目标检测的研究进展,找出不同方法的缺陷,采集红外图像,提取目标检测特征,并采用... 针对复杂背景红外弱小目标检测过程中存在的检测误差率高,检测时间过长等问题,提出基于全卷积网络的复杂背景红外弱小目标检测方法。分析复杂背景红外弱小目标检测的研究进展,找出不同方法的缺陷,采集红外图像,提取目标检测特征,并采用全卷积网络设计弱小目标检测的分类器,实现复杂背景红外弱小目标检测。实验结果表明,该方法的复杂背景红外弱小目标检测精度超过97%,具有较高的实际应用价值。 展开更多
关键词 全卷积网络 红外弱小目标 检测精度 提取特征
下载PDF
新工科背景下基于神经网络的隧道工程缺陷检测研究
18
作者 王振峰 徐明霞 《山西建筑》 2024年第17期152-155,共4页
隧道是综合交通运输体系的重要组成部分,是人民便捷生活的基本保障。为响应新工科建设号召,应对新一轮科技革命和产业变革,提升科学化建设要求,基于全卷积神经网络对隧道工程缺陷检测中表面裂缝检测方法进行了探究。通过已有照明拍摄平... 隧道是综合交通运输体系的重要组成部分,是人民便捷生活的基本保障。为响应新工科建设号召,应对新一轮科技革命和产业变革,提升科学化建设要求,基于全卷积神经网络对隧道工程缺陷检测中表面裂缝检测方法进行了探究。通过已有照明拍摄平台采集到的隧道表面图片,采用全卷积神经网络模型对图像中裂缝识别分类,再通过Adam优化器进行细化分割。研究结果表明该模型具有一定的可行性,模型评价结果较好。输出的高精度裂缝骨架可以对缺陷类型进行判定和初步处理,为后续实际缺陷评测和修补工程提供参考。 展开更多
关键词 思政改革 全卷积网络 隧道工程 缺陷检测
下载PDF
图像级高光谱影像高分辨率特征网络分类方法 被引量:1
19
作者 孙一帆 刘冰 +2 位作者 余旭初 谭熊 余岸竹 《测绘学报》 EI CSCD 北大核心 2024年第1期50-64,共15页
基于深度学习的高光谱影像分类方法通常将高光谱影像切分为局部方块作为模型的输入,这不但限制了长距离空-谱信息关联的获取,还带来了大量额外的计算开销。以全局图像作为输入的图像级分类方法能够有效避免这些缺陷,然而,现有的基于全... 基于深度学习的高光谱影像分类方法通常将高光谱影像切分为局部方块作为模型的输入,这不但限制了长距离空-谱信息关联的获取,还带来了大量额外的计算开销。以全局图像作为输入的图像级分类方法能够有效避免这些缺陷,然而,现有的基于全卷积神经网络特征串行流动模式的图像级分类方法在信息恢复时的细节损失会导致分类精度低、分类图视觉效果差等问题。因此,本文提出一种基于HRNet的图像级高光谱影像快速分类方法,在全程保持高分辨率特征的基础上对影像的多重分辨率特征进行并行计算与交叉融合,从而缓解了传统特征串行流动模式造成的信息损失问题。同时,提出多分辨率特征联合监督和投票分类策略,进一步提升了模型分类性能。利用4组开源高光谱影像数据集对本文方法进行验证,试验结果表明,与现有的先进分类方法相比,本文方法能够取得具有竞争性的分类结果,同时显著减少训练和分类时长,在实际应用时更具时效性。为了保证方法的复现性,笔者将代码开源于https://github.com/sssssyf/fast-image-level-vote。 展开更多
关键词 高光谱影像分类 图像级 全卷积神经网络 HRNet
下载PDF
集成多种上下文与混合交互的显著性目标检测
20
作者 夏晨星 陈欣雨 +4 位作者 孙延光 葛斌 方贤进 高修菊 张艳 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第7期2918-2931,共14页
显著性目标检测目的是识别和分割图像中的视觉显著性目标,它是计算机视觉任务及其相关领域的重要研究内容之一。当下基于全卷积网络(FCNs)的显著性目标检测方法已经取得了不错的性能,然而现实场景中的显著性目标类型多变且尺寸不固定,... 显著性目标检测目的是识别和分割图像中的视觉显著性目标,它是计算机视觉任务及其相关领域的重要研究内容之一。当下基于全卷积网络(FCNs)的显著性目标检测方法已经取得了不错的性能,然而现实场景中的显著性目标类型多变且尺寸不固定,这使得准确检测并完整分割出显著性目标仍然是一个巨大的挑战。为此,该文提出集成多种上下文和混合交互的显著性目标检测方法,通过利用密集上下文信息探索模块和多源特征混合交互模块来高效预测显著性目标。密集上下文信息探索模块采用空洞卷积、不对称卷积和密集引导连接渐进地捕获具有强关联性的多尺度和多感受野上下文信息,通过集成这些信息来增强每个初始多层级特征的表达能力。多源特征混合交互模块包含多种特征聚合操作,可以自适应交互来自多层级特征中的互补性信息,以生成用于准确预测显著性图的高质量特征表示。此方法在5个公共数据集上进行了性能测试,实验结果表明,该文方法在不同的评估指标下与19种基于深度学习的显著性目标检测方法相比取得优越的预测性能。 展开更多
关键词 计算机视觉 显著性目标检测 全卷积网络 上下文信息
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部