A microwave photonic notch filter with a complex coefficient is proposed and demonstrated based on four wave mixing(FWM). FWM effect of two single-frequency laser beams occurs in a highly nonlinear fiber(HNLF), and mu...A microwave photonic notch filter with a complex coefficient is proposed and demonstrated based on four wave mixing(FWM). FWM effect of two single-frequency laser beams occurs in a highly nonlinear fiber(HNLF), and multi-wavelength optical signals are generated and used to generate the multi-tap of microwave photonic filter(MPF). The complex coefficient is generated by using a Fourier-domain optical processor(FD-OP) to control the amplitude and phase of the optical carrier and phase modulation sidebands. The results show that this filter can be changed from bandpass filter to notch filter by controlling the FD-OP. The center frequency of the notch filter can be continuously tuned from 5.853 GHz to 29.311 GHz with free spectral range(FSR) of 11.729 GHz. The shape of the frequency response keeps unchanged when the phase is tuned.展开更多
The problem of fault detection for a class of nonlinear impulsive switched systems is investigated in this paper. Fault detection filters are designed such that the augmented systems are stable, and the residual error...The problem of fault detection for a class of nonlinear impulsive switched systems is investigated in this paper. Fault detection filters are designed such that the augmented systems are stable, and the residual error signal generated by the filters guarantees the H∞ performance for disturbances and faults. Sufficient conditions for the design of fault detection(FD) filters are presented by linear matrix inequalities. Moreover, the filter gains are characterized according to a solution of a convex optimization. Finally, an example derived from a pulse-width-modulation-driven boost converter is given to illustrate the effectiveness of the FD design approach.展开更多
基金supported by the National High Technology Research and Development Program of China(863 Program)(No.2013AA014200)the National Natural Science Foundation of China(No.11444001)the Municipal Natural Science Foundation of Tianjin(No.14JCYBJC16500)
文摘A microwave photonic notch filter with a complex coefficient is proposed and demonstrated based on four wave mixing(FWM). FWM effect of two single-frequency laser beams occurs in a highly nonlinear fiber(HNLF), and multi-wavelength optical signals are generated and used to generate the multi-tap of microwave photonic filter(MPF). The complex coefficient is generated by using a Fourier-domain optical processor(FD-OP) to control the amplitude and phase of the optical carrier and phase modulation sidebands. The results show that this filter can be changed from bandpass filter to notch filter by controlling the FD-OP. The center frequency of the notch filter can be continuously tuned from 5.853 GHz to 29.311 GHz with free spectral range(FSR) of 11.729 GHz. The shape of the frequency response keeps unchanged when the phase is tuned.
基金supported by Northeast Dianli University(Nos.BSJXM09 and BSJXM10)
文摘The problem of fault detection for a class of nonlinear impulsive switched systems is investigated in this paper. Fault detection filters are designed such that the augmented systems are stable, and the residual error signal generated by the filters guarantees the H∞ performance for disturbances and faults. Sufficient conditions for the design of fault detection(FD) filters are presented by linear matrix inequalities. Moreover, the filter gains are characterized according to a solution of a convex optimization. Finally, an example derived from a pulse-width-modulation-driven boost converter is given to illustrate the effectiveness of the FD design approach.