Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of t...Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of the steps of RTM is solving thewave equation and extrapolating the wave field forward and backward; therefore, solvingaccurately and efficiently the wave equation affects the imaging results and the efficiencyof RTM. In this study, we use the optimal time-space domain dispersion high-order finite-difference (FD) method to solve the viscoacoustic wave equation. Dispersion analysis andnumerical simulations show that the optimal time-space domain FD method is more accurateand suppresses the numerical dispersion. We use hybrid absorbing boundary conditions tohandle the boundary reflection. We also use source-normalized cross-correlation imagingconditions for migration and apply Laplace filtering to remove the low-frequency noise.Numerical modeling suggests that the viscoacoustic wave equation RTM has higher imagingresolution than the acoustic wave equation RTM when the viscosity of the subsurface isconsidered. In addition, for the wave field extrapolation, we use the adaptive variable-lengthFD operator to calculate the spatial derivatives and improve the computational efficiencywithout compromising the accuracy of the numerical solution.展开更多
The transmission and dispersive characteristics of slotline are calculated in this paper. The tail of Gaussion pulse is improved because a modified dispersive boundary condition (DBC) is adopted. It leads to a reduct...The transmission and dispersive characteristics of slotline are calculated in this paper. The tail of Gaussion pulse is improved because a modified dispersive boundary condition (DBC) is adopted. It leads to a reduction in computer memory requirements and computational time. The computational domain is greatly reduced to enable performance in personal computer. At the same time because edges of a boundary and summits are treated well, the computational results is more accurate and more collector.展开更多
The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of c...The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.展开更多
The transmission coefficients of electromagnetic (EM) waves due to a superconductor-dielectric superlattice are numerically calculated. Shift operator finite difference time domain (SO-FDTD) method is used in the ...The transmission coefficients of electromagnetic (EM) waves due to a superconductor-dielectric superlattice are numerically calculated. Shift operator finite difference time domain (SO-FDTD) method is used in the analysis. By using the SO-FDTD method, the transmission spectrum is obtained and its characteristics are investigated for different thicknesses of superconductor layers and dielectric layers, from which a stop band starting from zero frequency can be apparently observed. The relation between this low-frequency stop band and relative temperature, and also the London penetration depth at a superconductor temperature of zero degree are discussed, separately. The low-frequency stop band properties of superconductor-dielectric superlattice thus are well disclosed.展开更多
Based on conformal construction of physical model in a three-dimensional Cartesian grid,an integral-based conformal convolutional perfectly matched layer(CPML) is given for solving the truncation problem of the open...Based on conformal construction of physical model in a three-dimensional Cartesian grid,an integral-based conformal convolutional perfectly matched layer(CPML) is given for solving the truncation problem of the open port when the enlarged cell technique conformal finite-difference time-domain(ECT-CFDTD) method is used to simulate the wave propagation inside a perfect electric conductor(PEC) waveguide.The algorithm has the same numerical stability as the ECT-CFDTD method.For the long-time propagation problems of an evanescent wave in a waveguide,several numerical simulations are performed to analyze the reflection error by sweeping the constitutive parameters of the integral-based conformal CPML.Our numerical results show that the integral-based conformal CPML can be used to efficiently truncate the open port of the waveguide.展开更多
This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the...This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the three-pulse photon echo's amplitude and efficiency is analyzed with the Maxwell-Bloch equations solved by finite-difference timedomain method.We demonstrate that the amplitude of three-pulse echo will increase with the increasing of thickness and the optimum thickness to generate three-pulse photon echo is 0.3 cm for Tm^(3+):YAG when the attenuation of the input pulse is taken into account.Meanwhile,we find the expression 0.09 exp(α'L),which is previously employed to describe the relationship between echo's efficiency and thickness,should be modified as 1.3 · 0.09 exp(2.4 ·α'L) with the propagation of echo considered.展开更多
A new absorbing boundary condition (ABC) for frequency dependent finite difference time domain algorithm for the arbitrary dispersive media is presented. The concepts of the digital systems are introduced to the (F...A new absorbing boundary condition (ABC) for frequency dependent finite difference time domain algorithm for the arbitrary dispersive media is presented. The concepts of the digital systems are introduced to the (FD) 2TD method. On the basis of digital filter designing and vector algebra, the absorbing boundary condition under arbitrary angle of incidence are derived. The transient electromagnetic problems in two dimensions and three dimensions are calculated and the validity of the ABC is verified.展开更多
The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the ...The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.展开更多
An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D tra...An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D transverse-electric(TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit(ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field(TF/SF) boundary and the perfectly matched layer(PML), the radar cross section(RCS) of two2 D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method.展开更多
The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order sy...The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order symplectic finite- difference time-domain (SFDTD) scheme for the first time. By splitting the fields on one-dimensional grid and using the nature of numerical plane-wave in finite-difference time-domain (FDTD), the identical dispersion relation can be obtained and proved between the one-dimensional and three-dimensional grids. An efficient plane-wave source is simulated on one-dimensional grid and a perfect match can be achieved for a plane-wave propagating at any angle forming an integer grid cell ratio. Numerical simulations show that the method is valid for SFDTD and the residual field in SF region is shrinked down to -300 dB.展开更多
A higher-order finite-difference time-domain(HO-FDTD) in the spherical coordinate is presented in this paper. The stability and dispersion properties of the proposed scheme are investigated and an air-filled spheric...A higher-order finite-difference time-domain(HO-FDTD) in the spherical coordinate is presented in this paper. The stability and dispersion properties of the proposed scheme are investigated and an air-filled spherical resonator is modeled in order to demonstrate the advantage of this scheme over the finite-difference time-domain(FDTD) and the multiresolution time-domain(MRTD) schemes with respect to memory requirements and CPU time. Moreover, the Berenger's perfectly matched layer(PML) is derived for the spherical HO-FDTD grids, and the numerical results validate the efficiency of the PML.展开更多
The higher excited states for two dimensional finite rectangular well potential are calculated numerically,by solving the Schrödinger equation using the finite difference time domain method.Although,this method i...The higher excited states for two dimensional finite rectangular well potential are calculated numerically,by solving the Schrödinger equation using the finite difference time domain method.Although,this method is suitable to calculate the ground state of the quantum systems,it has been improved to calculate the higher excited states directly.The improvement is based on modifying the iterative process involved in this method to include two procedures.The first is known as cooling steps and the second is known as a heating step.By determining the required length of the cooling iteration steps using suitable excitation energy estimate,and repeating these two procedures using suitable initial guess function for sufficient times.This modified iteration will lead automatically to the desired excited state.In the two dimensional finite rectangular well potential problem both of the suitable excitation energy and the suitable initial guess wave function are calculated analytically using the separation of variables technique.展开更多
In this present context, mathematical modeling of the propagation of surface waves in a fluid saturated poro-elastic medium under the influence of initial stress has been considered using time dependent higher order f...In this present context, mathematical modeling of the propagation of surface waves in a fluid saturated poro-elastic medium under the influence of initial stress has been considered using time dependent higher order finite difference method (FDM). We have proved that the accuracy of this finite-difference scheme is 2M when we use 2nd order time domain finite-difference and 2M-th order space domain finite-difference. It also has been shown that the dispersion curves of Love waves are less dispersed for higher order FDM than of lower order FDM. The effect of initial stress, porosity and anisotropy of the layer in the propagation of Love waves has been studied here. The numerical results have been shown graphically. As a particular case, the phase velocity in a non porous elastic solid layer derived in this paper is in perfect agreement with that of Liu et al. (2009).展开更多
To deal with the staircase approximation problem in the standard finite-difference time-domain(FDTD) simulation,the two-dimensional boundary condition equations(BCE) method is proposed in this paper.In the BCE met...To deal with the staircase approximation problem in the standard finite-difference time-domain(FDTD) simulation,the two-dimensional boundary condition equations(BCE) method is proposed in this paper.In the BCE method,the standard FDTD algorithm can be used as usual,and the curved surface is treated by adding the boundary condition equations.Thus,while maintaining the simplicity and computational efficiency of the standard FDTD algorithm,the BCE method can solve the staircase approximation problem.The BCE method is validated by analyzing near field and far field scattering properties of the PEC and dielectric cylinders.The results show that the BCE method can maintain a second-order accuracy by eliminating the staircase approximation errors.Moreover,the results of the BCE method show good accuracy for cylinder scattering cases with different permittivities.展开更多
In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wa...In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wave number domain and with a 2.5D approach.Three-dimensional numerical models formulated in the time/space domain are less frequently used,mainly due to their high computational cost.Notwithstanding,these models present very attractive characteristics,such as the possibility of considering nonlinear behaviors or the modelling of excess pore pressure and non-homogeneous and non-periodic geometries in the longitudinal direction of the track.In this study,two 3D numerical approaches formulated in the time/space domain are compared and experimentally validated.The first one consists of a finite element approach and the second one of a finite difference approach.The experimental validation in an actual case situated in Carregado(Portugal)shows an acceptable fitting between the numerical results and the actual measurements for both models.However,there are some differences among them.This study therefore includes some recommendations for their use in practical soil dynamics and geotechnical engineering.展开更多
To improve the resolution of crosshole electromagnetic tomography, high precision of forward modeling is necessary. A pseudo-spectral time domain (PSTD) forward modeling was used to simulate electromagnetic wave pro...To improve the resolution of crosshole electromagnetic tomography, high precision of forward modeling is necessary. A pseudo-spectral time domain (PSTD) forward modeling was used to simulate electromagnetic wave propagation between two boreholes. The PSTD algorithm is based on the finite difference time domain (FDTD) method and uses the fast Fourier transform (FFT) algorithm for spatial derivatives in Maxwell's equations. Besides having the strongpoint of the FDTD method, the calculation precision of the PSTD algorithm is higher than that of the FDTD method under the same calculation condition. The forward modeling using the PSTD method will play an important role in enhancing the resolution of crosshole electromagnetic tomography.展开更多
The characteristics of a cylindrical conformal microstrip patch antenna are analyzed by using the characteristic-based time domain (CBTD) method. A governing equation in the cylindrical coordinate system is formulat...The characteristics of a cylindrical conformal microstrip patch antenna are analyzed by using the characteristic-based time domain (CBTD) method. A governing equation in the cylindrical coordinate system is formulated directly to facilitate the analysis of cylindrically conformal microstrip patch antennas. The algorithm has second-order accuracy both in time and space domain and has the potential to eliminate the spurious wave reflection from the numerical boundaries of the computational domain, Numerical results demonstrate the important merits and accuracy of the proposed technique in computational electromagnetics,展开更多
In this paper,optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain(FDTD) simulat...In this paper,optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain(FDTD) simulation method.By simulating reflectance spectra,electric field distribution,and charge distribution,we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light,in which the four reflectance dips are attributed to Fabry–Perot cavity resonances in the coaxial cavity.A coaxial waveguide mode TE11 will exist in these annular cavities,and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities.These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss.The formation of an absorption peak can be explained from the aspect of phase matching conditions.We observed that the proposed structure can be tuned over the broad spectral range of 600–4000 nm by changing the outer and inner radii of the annular gaps,gap surface topography.Meanwhile,different lengths of the cavity may cause the shift of resonance dips.Also,we study the field enhancement at different vertical locations of the slit.In addition,dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths,which make the annular cavities good candidates for refractive index sensors.The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity.Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates,refractive index sensors,nano-lasers,and optical trappers.展开更多
基金This research was supported by the National Nature Science Foundation of China (No. 41074100) and the Program for NewCentury Excellent Talents in the University of the Ministry of Education of China (No. NCET- 10-0812).
文摘Prestack reverse time migration (RTM) is an accurate imaging method ofsubsurface media. The viscoacoustic prestack RTM is of practical significance because itconsiders the viscosity of the subsurface media. One of the steps of RTM is solving thewave equation and extrapolating the wave field forward and backward; therefore, solvingaccurately and efficiently the wave equation affects the imaging results and the efficiencyof RTM. In this study, we use the optimal time-space domain dispersion high-order finite-difference (FD) method to solve the viscoacoustic wave equation. Dispersion analysis andnumerical simulations show that the optimal time-space domain FD method is more accurateand suppresses the numerical dispersion. We use hybrid absorbing boundary conditions tohandle the boundary reflection. We also use source-normalized cross-correlation imagingconditions for migration and apply Laplace filtering to remove the low-frequency noise.Numerical modeling suggests that the viscoacoustic wave equation RTM has higher imagingresolution than the acoustic wave equation RTM when the viscosity of the subsurface isconsidered. In addition, for the wave field extrapolation, we use the adaptive variable-lengthFD operator to calculate the spatial derivatives and improve the computational efficiencywithout compromising the accuracy of the numerical solution.
文摘The transmission and dispersive characteristics of slotline are calculated in this paper. The tail of Gaussion pulse is improved because a modified dispersive boundary condition (DBC) is adopted. It leads to a reduction in computer memory requirements and computational time. The computational domain is greatly reduced to enable performance in personal computer. At the same time because edges of a boundary and summits are treated well, the computational results is more accurate and more collector.
文摘The ground penetrating radar(GPR) forward simulation all aims at the singular and regular models, such as sandwich model, round cavity, square cavity, and so on, which are comparably simple. But as to the forward of curl interface underground or “v” figure complex model, it is difficult to realize. So it is important to forward the complex geoelectricity model. This paper takes two Maxwell’s vorticity equations as departure point, makes use of the principles of Yee’s space grid model theory and the basic principle finite difference time domain method, and deduces a GPR forward system of equation of two dimensional spaces. The Mur super absorbed boundary condition is adopted to solve the super strong reflection on the interceptive boundary when there is the forward simulation. And a self-made program is used to process forward simulation to two typical geoelectricity model.
基金Project supported partly by the Open Research Program in State Key Laboratory of Millimeter Waves of China(Grant No.K200802)partly by the National Natural Science Foundation of China(Grant No.60971122)
文摘The transmission coefficients of electromagnetic (EM) waves due to a superconductor-dielectric superlattice are numerically calculated. Shift operator finite difference time domain (SO-FDTD) method is used in the analysis. By using the SO-FDTD method, the transmission spectrum is obtained and its characteristics are investigated for different thicknesses of superconductor layers and dielectric layers, from which a stop band starting from zero frequency can be apparently observed. The relation between this low-frequency stop band and relative temperature, and also the London penetration depth at a superconductor temperature of zero degree are discussed, separately. The low-frequency stop band properties of superconductor-dielectric superlattice thus are well disclosed.
基金supported by the National Natural Science Foundation of China(Grant No.61231003)
文摘Based on conformal construction of physical model in a three-dimensional Cartesian grid,an integral-based conformal convolutional perfectly matched layer(CPML) is given for solving the truncation problem of the open port when the enlarged cell technique conformal finite-difference time-domain(ECT-CFDTD) method is used to simulate the wave propagation inside a perfect electric conductor(PEC) waveguide.The algorithm has the same numerical stability as the ECT-CFDTD method.For the long-time propagation problems of an evanescent wave in a waveguide,several numerical simulations are performed to analyze the reflection error by sweeping the constitutive parameters of the integral-based conformal CPML.Our numerical results show that the integral-based conformal CPML can be used to efficiently truncate the open port of the waveguide.
基金Project supported by Tianjin Research Program Application Foundation and Advanced Technology,China(Grant No.15JCQNJC01100)
文摘This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works.The influence of thickness on the three-pulse photon echo's amplitude and efficiency is analyzed with the Maxwell-Bloch equations solved by finite-difference timedomain method.We demonstrate that the amplitude of three-pulse echo will increase with the increasing of thickness and the optimum thickness to generate three-pulse photon echo is 0.3 cm for Tm^(3+):YAG when the attenuation of the input pulse is taken into account.Meanwhile,we find the expression 0.09 exp(α'L),which is previously employed to describe the relationship between echo's efficiency and thickness,should be modified as 1.3 · 0.09 exp(2.4 ·α'L) with the propagation of echo considered.
文摘A new absorbing boundary condition (ABC) for frequency dependent finite difference time domain algorithm for the arbitrary dispersive media is presented. The concepts of the digital systems are introduced to the (FD) 2TD method. On the basis of digital filter designing and vector algebra, the absorbing boundary condition under arbitrary angle of incidence are derived. The transient electromagnetic problems in two dimensions and three dimensions are calculated and the validity of the ABC is verified.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11304074,61475042,and 11274088)the Natural Science Foundation of Hebei Province,China(Grant Nos.A2015202320 and GCC2014048)the Key Subject Construction Project of Hebei Province University,China
文摘The finite-difference time-domain method is used to simulate the optical characteristics of an in-plane switching blue phase liquid crystal display.Compared with the matrix optic methods and the refractive method,the finite-difference timedomain method,which is used to directly solve Maxwell's equations,can consider the lateral variation of the refractive index and obtain an accurate convergence effect.The simulation results show that e-rays and o-rays bend in different directions when the in-plane switching blue phase liquid crystal display is driven by the operating voltage.The finitedifference time-domain method should be used when the distribution of the liquid crystal in the liquid crystal display has a large lateral change.
基金supported by the National Natural Science Foundation of China(Grant Nos.61331007 and 61471105)
文摘An efficient conformal locally one-dimensional finite-difference time-domain(LOD-CFDTD) method is presented for solving two-dimensional(2D) electromagnetic(EM) scattering problems. The formulation for the 2D transverse-electric(TE) case is presented and its stability property and numerical dispersion relationship are theoretically investigated. It is shown that the introduction of irregular grids will not damage the numerical stability. Instead of the staircasing approximation, the conformal scheme is only employed to model the curve boundaries, whereas the standard Yee grids are used for the remaining regions. As the irregular grids account for a very small percentage of the total space grids, the conformal scheme has little effect on the numerical dispersion. Moreover, the proposed method, which requires fewer arithmetic operations than the alternating-direction-implicit(ADI) CFDTD method, leads to a further reduction of the CPU time. With the total-field/scattered-field(TF/SF) boundary and the perfectly matched layer(PML), the radar cross section(RCS) of two2 D structures is calculated. The numerical examples verify the accuracy and efficiency of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.60931002 and 61101064)the Universities Natural Science Foundation of Anhui Province,China(Grant Nos.KJ2011A002 and 1108085J01)
文摘The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order symplectic finite- difference time-domain (SFDTD) scheme for the first time. By splitting the fields on one-dimensional grid and using the nature of numerical plane-wave in finite-difference time-domain (FDTD), the identical dispersion relation can be obtained and proved between the one-dimensional and three-dimensional grids. An efficient plane-wave source is simulated on one-dimensional grid and a perfect match can be achieved for a plane-wave propagating at any angle forming an integer grid cell ratio. Numerical simulations show that the method is valid for SFDTD and the residual field in SF region is shrinked down to -300 dB.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61301063 and 41305017)
文摘A higher-order finite-difference time-domain(HO-FDTD) in the spherical coordinate is presented in this paper. The stability and dispersion properties of the proposed scheme are investigated and an air-filled spherical resonator is modeled in order to demonstrate the advantage of this scheme over the finite-difference time-domain(FDTD) and the multiresolution time-domain(MRTD) schemes with respect to memory requirements and CPU time. Moreover, the Berenger's perfectly matched layer(PML) is derived for the spherical HO-FDTD grids, and the numerical results validate the efficiency of the PML.
文摘The higher excited states for two dimensional finite rectangular well potential are calculated numerically,by solving the Schrödinger equation using the finite difference time domain method.Although,this method is suitable to calculate the ground state of the quantum systems,it has been improved to calculate the higher excited states directly.The improvement is based on modifying the iterative process involved in this method to include two procedures.The first is known as cooling steps and the second is known as a heating step.By determining the required length of the cooling iteration steps using suitable excitation energy estimate,and repeating these two procedures using suitable initial guess function for sufficient times.This modified iteration will lead automatically to the desired excited state.In the two dimensional finite rectangular well potential problem both of the suitable excitation energy and the suitable initial guess wave function are calculated analytically using the separation of variables technique.
文摘In this present context, mathematical modeling of the propagation of surface waves in a fluid saturated poro-elastic medium under the influence of initial stress has been considered using time dependent higher order finite difference method (FDM). We have proved that the accuracy of this finite-difference scheme is 2M when we use 2nd order time domain finite-difference and 2M-th order space domain finite-difference. It also has been shown that the dispersion curves of Love waves are less dispersed for higher order FDM than of lower order FDM. The effect of initial stress, porosity and anisotropy of the layer in the propagation of Love waves has been studied here. The numerical results have been shown graphically. As a particular case, the phase velocity in a non porous elastic solid layer derived in this paper is in perfect agreement with that of Liu et al. (2009).
基金Project supported by the National Natural Science Foundation of China(Grant No.51025622)
文摘To deal with the staircase approximation problem in the standard finite-difference time-domain(FDTD) simulation,the two-dimensional boundary condition equations(BCE) method is proposed in this paper.In the BCE method,the standard FDTD algorithm can be used as usual,and the curved surface is treated by adding the boundary condition equations.Thus,while maintaining the simplicity and computational efficiency of the standard FDTD algorithm,the BCE method can solve the staircase approximation problem.The BCE method is validated by analyzing near field and far field scattering properties of the PEC and dielectric cylinders.The results show that the BCE method can maintain a second-order accuracy by eliminating the staircase approximation errors.Moreover,the results of the BCE method show good accuracy for cylinder scattering cases with different permittivities.
文摘In the last 30 years,the scientific community has developed and proposed different models and numerical approaches for the study of vibrations induced by railway traffic.Most of them are formulated in the frequency/wave number domain and with a 2.5D approach.Three-dimensional numerical models formulated in the time/space domain are less frequently used,mainly due to their high computational cost.Notwithstanding,these models present very attractive characteristics,such as the possibility of considering nonlinear behaviors or the modelling of excess pore pressure and non-homogeneous and non-periodic geometries in the longitudinal direction of the track.In this study,two 3D numerical approaches formulated in the time/space domain are compared and experimentally validated.The first one consists of a finite element approach and the second one of a finite difference approach.The experimental validation in an actual case situated in Carregado(Portugal)shows an acceptable fitting between the numerical results and the actual measurements for both models.However,there are some differences among them.This study therefore includes some recommendations for their use in practical soil dynamics and geotechnical engineering.
基金This paper is supported by the Focused Subject Program of Beijing (No. XK104910598)Foundation for Returned Students of Ministry of Education, and Foundation of China University of Geosciences (Beijing).
文摘To improve the resolution of crosshole electromagnetic tomography, high precision of forward modeling is necessary. A pseudo-spectral time domain (PSTD) forward modeling was used to simulate electromagnetic wave propagation between two boreholes. The PSTD algorithm is based on the finite difference time domain (FDTD) method and uses the fast Fourier transform (FFT) algorithm for spatial derivatives in Maxwell's equations. Besides having the strongpoint of the FDTD method, the calculation precision of the PSTD algorithm is higher than that of the FDTD method under the same calculation condition. The forward modeling using the PSTD method will play an important role in enhancing the resolution of crosshole electromagnetic tomography.
文摘The characteristics of a cylindrical conformal microstrip patch antenna are analyzed by using the characteristic-based time domain (CBTD) method. A governing equation in the cylindrical coordinate system is formulated directly to facilitate the analysis of cylindrically conformal microstrip patch antennas. The algorithm has second-order accuracy both in time and space domain and has the potential to eliminate the spurious wave reflection from the numerical boundaries of the computational domain, Numerical results demonstrate the important merits and accuracy of the proposed technique in computational electromagnetics,
基金Project supported by the National Natural Science Foundation of China(Grant No.61178044)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20160969)the University Postgraduate Research and Innovation Project of Jiangsu Province,China(Grant No.KYLX 0723)
文摘In this paper,optical properties of two-dimensional periodic annular slot cavity arrays in hexagonal close-packing on a silica substrate are theoretically characterized by finite difference time domain(FDTD) simulation method.By simulating reflectance spectra,electric field distribution,and charge distribution,we confirm that multiple cylindrical surface plasmon resonances can be excited in annular inclined slot cavities by linearly polarized light,in which the four reflectance dips are attributed to Fabry–Perot cavity resonances in the coaxial cavity.A coaxial waveguide mode TE11 will exist in these annular cavities,and the wavelengths of these reflectance dips are effectively tailored by changing the geometrical pattern of slot cavity and the dielectric materials filled in the cavities.These resonant wavelengths are localized in annular cavities with large electric field enhancement and dissipate gradually due to metal loss.The formation of an absorption peak can be explained from the aspect of phase matching conditions.We observed that the proposed structure can be tuned over the broad spectral range of 600–4000 nm by changing the outer and inner radii of the annular gaps,gap surface topography.Meanwhile,different lengths of the cavity may cause the shift of resonance dips.Also,we study the field enhancement at different vertical locations of the slit.In addition,dielectric materials filling in the annular gaps will result in a shift of the resonance wavelengths,which make the annular cavities good candidates for refractive index sensors.The refractive index sensitivity of annular cavities can also be tuned by the geometry size and the media around the cavity.Annular cavities with novel applications can be implied as surface enhanced Raman spectra substrates,refractive index sensors,nano-lasers,and optical trappers.