期刊文献+
共找到15,955篇文章
< 1 2 250 >
每页显示 20 50 100
Modularized and Parametric Modeling Technology for Finite Element Simulations of Underground Engineering under Complicated Geological Conditions
1
作者 Jiaqi Wu Li Zhuo +4 位作者 Jianliang Pei Yao Li Hongqiang Xie Jiaming Wu Huaizhong Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期621-645,共25页
The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ... The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses. 展开更多
关键词 Underground engineering modularized and parametric modeling finite element method complex geological structure cloud modeling
下载PDF
Multi-scale Modeling and Finite Element Analyses of Thermal Conductivity of 3D C/SiC Composites Fabricating by Flexible-Oriented Woven Process
2
作者 Zheng Sun Zhongde Shan +5 位作者 Hao Huang Dong Wang Wang Wang Jiale Liu Chenchen Tan Chaozhong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期275-288,共14页
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr... Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures. 展开更多
关键词 3D C/SiC composites finite element analyses Multi-scale modeling Thermal conductivity
下载PDF
In silico optimization of actuation performance in dielectric elastomercomposites via integrated finite element modeling and deep learning
3
作者 Jiaxuan Ma Sheng Sun 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第1期48-56,共9页
Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize ... Dielectric elastomers(DEs)require balanced electric actuation performance and mechanical integrity under applied voltages.Incorporating high dielectric particles as fillers provides extensive design space to optimize concentration,morphology,and distribution for improved actuation performance and material modulus.This study presents an integrated framework combining finite element modeling(FEM)and deep learning to optimize the microstructure of DE composites.FEM first calculates actuation performance and the effective modulus across varied filler combinations,with these data used to train a convolutional neural network(CNN).Integrating the CNN into a multi-objective genetic algorithm generates designs with enhanced actuation performance and material modulus compared to the conventional optimization approach based on FEM approach within the same time.This framework harnesses artificial intelligence to navigate vast design possibilities,enabling optimized microstructures for high-performance DE composites. 展开更多
关键词 Dielectric elastomer composites Multi-objective optimization finite element modeling Convolutional neural network
下载PDF
Contribution to the Full 3D Finite Element Modelling of a Hybrid Stepping Motor with and without Current in the Coils
4
作者 Belemdara Dingamadji Hilaire Mbaïnaïbeye Jérôme Guidkaya Golam 《Journal of Electromagnetic Analysis and Applications》 2024年第2期11-23,共13页
The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the tw... The paper presents our contribution to the full 3D finite element modelling of a hybrid stepping motor using COMSOL Multiphysics software. This type of four-phase motor has a permanent magnet interposed between the two identical and coaxial half stators. The calculation of the field with or without current in the windings (respectively with or without permanent magnet) is done using a mixed formulation with strong coupling. In addition, the local high saturation of the ferromagnetic material and the radial and axial components of the magnetic flux are taken into account. The results obtained make it possible to clearly observe, as a function of the intensity of the bus current or the remanent induction, the saturation zones, the lines, the orientations and the magnetic flux densities. 3D finite element modelling provide more accurate numerical data on the magnetic field through multiphysics analysis. This analysis considers the actual operating conditions and leads to the design of an optimized machine structure, with or without current in the windings and/or permanent magnet. 展开更多
关键词 modelLING 3D finite elements Magnetic Flux Hybrid Stepping Motor
下载PDF
An ultrasound-guided percutaneous electrical nerve stimulation regimen devised using finite element modeling promotes functional recovery after median nerve transection 被引量:3
5
作者 Xiao-Lei Chu Xi-Zi Song +5 位作者 Yu-Ru Li Zi-Ren Wu Qi Li Qing-Wen Li Xiao-Song Gu Dong Ming 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第3期683-688,共6页
Percutaneous electrical nerve stimulation of an injured nerve can promote and accelerate peripheral nerve regeneration and improve function.When performing acupuncture and moxibustion,locating the injured nerve using ... Percutaneous electrical nerve stimulation of an injured nerve can promote and accelerate peripheral nerve regeneration and improve function.When performing acupuncture and moxibustion,locating the injured nerve using ultrasound before percutaneous nerve stimulation can help prevent further injury to an already injured nerve.However,stimulation parameters have not been standardized.In this study,we constructed a multi-layer human forearm model using finite element modeling.Taking current density and activated function as optimization indicators,the optimal percutaneous nerve stimulation parameters were established.The optimal parameters were parallel placement located 3 cm apart with the injury site at the midpoint between the needles.To validate the efficacy of this regimen,we performed a randomized controlled trial in 23 patients with median nerve transection who underwent neurorrhaphy.Patients who received conventional rehabilitation combined with percutaneous electrical nerve stimulation experienced greater improvement in sensory function,motor function,and grip strength than those who received conventional rehabilitation combined with transcutaneous electrical nerve stimulation.These findings suggest that the percutaneous electrical nerve stimulation regimen established in this study can improve global median nerve function in patients with median nerve transection. 展开更多
关键词 finite element modeling median nerve transection nerve regeneration NEUROREHABILITATION percutaneous electrical nerve stimulation peripheral nerve injury randomized controlled trial
下载PDF
Study on hot deformation behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy using a combination of strain-compensated Arrhenius constitutive model and finite element simulation method 被引量:2
6
作者 Li Hu Mengwei Lang +4 位作者 Laixin Shi Mingao Li Tao Zhou Chengli Bao Mingbo Yang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第3期1016-1028,共13页
Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s... Isothermal hot compression experiments were conducted on homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy to investigate hot deformation behavior at the temperature range of 673-773 K and the strain rate range of 0.001-1 s^(-1)by using a Gleeble-1500D thermo mechanical simulator.Metallographic characterization on samples deformed to true strain of 0.70 illustrates the occurrence of flow localization and/or microcrack at deformation conditions of 673 K/0.01 s^(-1),673 K/1 s^(-1)and 698 K/1 s^(-1),indicating that these three deformation conditions should be excluded during hot working of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.Based on the measured true stress-strain data,the strain-compensated Arrhenius constitutive model was constructed and then incorporated into UHARD subroutine of ABAQUS software to study hot deformation process of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy.By comparison with measured force-displacement curves,the predicted results can describe well the rheological behavior of homogenized Mg-8.5Gd-4.5Y-0.8Zn-0.4Zr alloy,verifying the validity of finite element simulation of hot compression process with this complicated constitutive model.Numerical results demonstrate that the distribution of values of material parameters(α,n,Q and ln A)within deformed sample is inhomogeneous.This issue is directly correlated to the uneven distribution of equivalent plastic strain due to the friction effect.Moreover,at a given temperature the increase of strain rate would result in the decrease of equivalent plastic strain within the central region of deformed sample,which hinders the occurrence of dynamic recrystallization(DRX). 展开更多
关键词 Mg-RE-Zn alloy Hot deformation Microstructure evolution Constitutive model finite element simulation
下载PDF
Finite Element Simulation of Radial Tire Building and Shaping Processes Using an Elasto-Viscoplastic Model 被引量:1
7
作者 Yinlong Wang Zhao Li +1 位作者 Ziran Li Yang Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1187-1208,共22页
The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investiga... The comprehensive tire building and shaping processes are investigated through the finite element method(FEM)in this article.The mechanical properties of the uncured rubber from different tire components are investigated through cyclic loading-unloading experiments under different strain rates.Based on the experiments,an elastoviscoplastic constitutive model is adopted to describe themechanical behaviors of the uncured rubber.The distinct mechanical properties,including the stress level,hysteresis and residual strain,of the uncured rubber can all be well characterized.The whole tire building process(including component winding,rubber bladder inflation,component stitching and carcass band folding-back)and the shaping process are simulated using this constitutive model.The simulated green tire profile is in good agreement with the actual profile obtained through 3D scanning.The deformation and stress of the rubber components and the cord reinforcements during production can be obtained fromthe FE simulation,which is helpful for judging the rationality of the tire construction design.Finally,the influence of the parameter“drum width”is investigated,and the simulated result is found to be consistent with the experimental observations,which verifies the effectiveness of the simulation.The established simulation strategy provides some guiding significance for the improvement of tire design parameters and the elimination of tire production defects. 展开更多
关键词 Uncured rubber constitutive modeling radial tire building process finite element method
下载PDF
Finite Element Implementation of the Exponential Drucker-Prager Plasticity Model for Adhesive Joints
8
作者 Kerati Suwanpakpraek Baramee Patamaprohm +1 位作者 Sacharuck Pornpeerakeat Arisara Chaikittiratana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期1765-1778,共14页
This paper deals with the numerical implementation of the exponential Drucker-Parger plasticitymodel in the commercial finite element software,ABAQUS,via user subroutine UMAT for adhesive joint simulations.The influen... This paper deals with the numerical implementation of the exponential Drucker-Parger plasticitymodel in the commercial finite element software,ABAQUS,via user subroutine UMAT for adhesive joint simulations.The influence of hydrostatic pressure on adhesive strength was investigated by a modified Arcan fixture designed particularly to induce a different state of hydrostatic pressure within an adhesive layer.The developed user subroutine UMAT,which utilizes an associated plastic flow during a plastic deformation,can provide a good agreement between the simulations and the experimental data.Better numerical stability at highly positive hydrostatic pressure loads for a very high order of exponential function can also be achieved compared to when a non-associated flow is used. 展开更多
关键词 Exponential Drucker-Prager model modified-Arcan test finite element analysis plastic potential function
下载PDF
A rigid-flexible coupling finite element model of coupler for analyzing train instability behavior during collision
9
作者 Jingke Zhang Tao Zhu +5 位作者 Bing Yang Xiaorui Wang Shoune Xiao Guangwu Yang Yanwen Liu Quanwei Che 《Railway Engineering Science》 2023年第4期325-339,共15页
Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of ... Rail vehicles generate huge longitudinal impact loads in collisions.If unreasonable matching exists between the compressive strength of the intermediate coupler and the structural strength of the car body,the risk of car body structure damage and train derailment will increase.Herein,a four-stage rigid-flexible coupling finite element model of the coupler is established considering the coupler buckling load.The influence of the coupler buckling load on the train longitudinal-vertical-hori-zontal buckling behavior was studied,and the mechanism of the train horizontal buckling instability in train collisions was revealed.Analysis results show that an intermediate coupler should be designed to ensure that the actual buckling load is less than the compressive load when the car body structure begins to deform plastically.The actual buckling load of the coupler and the asymmetry of the structural strength of the car body in the lateral direction are two important influencing factors for the lateral buckling of a train collision.If the strength of the two sides of the car body structure in the lateral direction is asymmetrical,the deformation on the weaker side will be larger,and the end of the car body will begin to deflect under the action of the coupler force,which in turn causes the train to undergo sawtooth buckling. 展开更多
关键词 Intermediate coupler Rigid-flexible coupling finite element model Design buckling load Actual buckling load Lateral buckling instability
下载PDF
Behaviour of non-ballast pre-stressed and precast track structures in high speed railway based on multiscale finite element model
10
作者 Yuhang Wang Jjun Wang +2 位作者 Qi Tang Jike Tan Guobing Lu 《High-Speed Railway》 2023年第1期70-85,共16页
In order to make further study on the mechanical property of CRTSIII type slab non-ballast track structures,which was self-designed in China,based on the method of the multiscale finite element model(FEM),the traditio... In order to make further study on the mechanical property of CRTSIII type slab non-ballast track structures,which was self-designed in China,based on the method of the multiscale finite element model(FEM),the traditional FEM of slab non-ballast track structures was improved.The multiscale FEM of CRTSII type slab nonballast track structures was established based on the general finite element program ABAQUs.Then the comparative calculation was made between various FEMs,showing that the high solution precision,fast modelling speed and high solution efficiency could be obtained.Therefore,the multiscale FEM was suitable for the parametric study on mechanical behaviour of CRTSII type slab non-ballast track structures,and then the key influence factor and constructions could be optimized. 展开更多
关键词 High speed railway Non-ballast track Multiscale finite element model
下载PDF
Finite element model updating and validating of Runyang Suspension Bridge based on SHMS 被引量:7
11
作者 王浩 李爱群 缪长青 《Journal of Southeast University(English Edition)》 EI CAS 2005年第4期474-479,共6页
Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response ... Based on the finite element (FE) program ANSYS, a three-dimensional model for the Runyang Suspension Bridge (RSB) is established. The structural natural frequency, vibration mode, stress and displacement response under various load cases are given. A new method of FE model updating is presented based on the physical meaning of sensitivity and the penalty function concept. In this method, the structural model is updated by modifying the parameters of design, and validated by structural natural vibration characteristics, stress response as well as displacement response. The design parameters used for updating are bounded according to measured static response and engineering judgment. The FE model of RSB is updated and validated by the measurements coming from the structural health monitoring system (SHMS), and the FE baseline model reflecting the current state of RSB is achieved. Both the dynamic and static results show that the method is effective in updating the FE model of long span suspension bridges. The results obtained provide an important research basis for damage alarming and health monitoring of the RSB. 展开更多
关键词 suspension bridge finite element model updating model validating baseline model structural health monitoring system (SHMS)
下载PDF
A Finite Element Model of Locked Plating in Femoral Shaft Fractures
12
作者 Brian E. Schwartz Farid M. L. Amirouche +3 位作者 Kwang Won Choi Alfonso Mejia Mark Gonzalez Jacob R. Seiler 《Open Journal of Orthopedics》 2014年第4期104-112,共9页
Introduction: The Locking Compression Plate (LCP) system is a versatile technology that can be used either through conventional compression plating techniques or as an internal fixator with locking head screws. There ... Introduction: The Locking Compression Plate (LCP) system is a versatile technology that can be used either through conventional compression plating techniques or as an internal fixator with locking head screws. There have been only a few biomechanical studies examining the role of locked screw configuration on construct stability with most recommendations based upon empirical evidence or data from compression plating. This study will attempt to determine how different locked screw configurations, fracture gaps (distance between bone fragments), and interface gaps (distance between plate and bone) will affect the peak stress(von Mises stress) experienced by the plate-screw construct and, thereby, look at ways to minimize the risk of hardware failure. Materials Methods: A finite element model (FEM) was developed of a transverse mid shaft femoral fracture bridged by an eight-hole titanium LCP. Seven different screw configurations were investigated. Three different fracture gaps and three different interface gaps were studied as well. Results: The 1368 configuration was found to experience the least peak stress of 2.10 GPa while the 2367, 2457, and all filled configurations were found to have the highest peak stress (25.29 GPa, 22.78 GPa, and 23.54 GPa, respectively). Peak stress increased when the interface gap increased. Peak stress also increased as the fracture gap increased, with the largest jump between the 1 mm and 2 mm gaps. Conclusions: Every fracture is unique, and has a vast amount of parameters that must be considered when the surgeon is developing a treatment plan. For transverse femoral shaft fractures, the results of this study suggest that a working length of 2 screw holes on either side of the fracture may also lead to lower peak stress. In addition, our results demonstrate that minimizing the fracture gap and interface gap will lead to decreased stress in the plate-screw construct. 展开更多
关键词 finite element model Locked PLATING femORAL SHAFT FRACTURES
下载PDF
Dynamic finite element model updating using meta-model and genetic algorithm 被引量:3
13
作者 费庆国 李爱群 缪长青 《Journal of Southeast University(English Edition)》 EI CAS 2006年第2期213-217,共5页
Current dynamic finite element model updating methods are not efficient or restricted to the problem of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic algori... Current dynamic finite element model updating methods are not efficient or restricted to the problem of local optima. To circumvent these, a novel updating method which integrates the meta-model and the genetic algorithm is proposed. Experimental design technique is used to determine the best sampling points for the estimation of polynomial coefficients given the order and the number of independent variables. Finite element analyses are performed to generate the sampling data. Regression analysis is then used to estimate the response surface model to approximate the functional relationship between response features and design parameters on the entire design space. In the fitness evaluation of the genetic algorithm, the response surface model is used to substitute the finite element model to output features with given design parameters for the computation of fitness for the individual. Finally, the global optima that corresponds to the updated design parameter is acquired after several generations of evolution. In the application example, finite element analysis and modal testing are performed on a real chassis model. The finite element model is updated using the proposed method. After updating, root-mean-square error of modal frequencies is smaller than 2%. Furthermore, prediction ability of the updated model is validated using the testing results of the modified structure. The root-mean-square error of the prediction errors is smaller than 2%. 展开更多
关键词 finite element model model updating response surface model genetic algorithm
下载PDF
Phase-field modeling of dendritic growth under forced flow based on adaptive finite element method 被引量:2
14
作者 朱昶胜 雷鹏 +1 位作者 肖荣振 冯力 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期241-248,共8页
A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic gr... A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain. 展开更多
关键词 dendritic growth phase-field model forced flow adaptive finite element method
下载PDF
Computer model of the human head-neck and finite element analysis 被引量:3
15
作者 薛强 卢晓艳 《微计算机信息》 北大核心 2008年第6期262-264,共3页
The difficulty in establishing the finite element model of head and cervical spine is interpreted in the study. A head-neck 3D model is constructed accurately and quickly by the technology of CT scan,the automatically... The difficulty in establishing the finite element model of head and cervical spine is interpreted in the study. A head-neck 3D model is constructed accurately and quickly by the technology of CT scan,the automatically modeling of Mimics software and the RE technology of Geomagic software. Then the finite element model of the head-neck which is close to the real one is set up by the preprocessor of the FEM soft ware ANSYS. After the transient finite element analysis is performed on the model,the historical response of the displacement of the head is obtained. The result is validated by the result of the existed experiment. The stress,as well as the deformation,of nodes in the head and the cervical spine at any time benefits a lot to the clinic study on the injure to the head and neck caused by the impacts. And all the analysis is done by limited computer available. 展开更多
关键词 头颈椎 计算机模型 生物力学 有限元分析
下载PDF
Torsional Response Analysis of Flexible Pipe Based on Theory and Finite Element Method 被引量:1
16
作者 LEI Qing-long ZHU Xiao-hua 《China Ocean Engineering》 SCIE EI CSCD 2023年第2期190-203,共14页
As key components connecting offshore floating production platforms and subsea imports, offshore flexible pipes play significant roles in oil, natural gas, and water injection. It is found that torsional failure is on... As key components connecting offshore floating production platforms and subsea imports, offshore flexible pipes play significant roles in oil, natural gas, and water injection. It is found that torsional failure is one of the failure modes of flexible pipes during transportation and laying. In this paper, a theoretical model(TM) of a flexible pipe section mechanics is established, in which the carcass layer and the pressure armor layer are equivalent to the orthogonal anisotropic layers due to its complex cross-section structure. The calculation results of the TM are consistent with those of a finite element model(FEM), which can accurately describe the torsional response of the flexible pipe.Subsequently, the TM and FEM are used to discuss the influence of boundary conditions on the torsional response.The structure of the flexible pipe is stable when twisted counterclockwise. However, limiting the top axial displacement can improve the axial and radial instability of the tensile armor layer when twisted clockwise. Finally, it is recommended that the flexible pipe can be kept under top fixation during service or installation to avoid torsional failure. 展开更多
关键词 flexible pipe torsional response analytical model finite element model
下载PDF
Proper orthogonal decomposition based seismic source wavefield reconstruction for finite element reverse time migration
17
作者 Wen-Zhuo Tan Bang-Yu Wu +1 位作者 Rui Li Bo Li 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期199-211,共13页
The large storage requirement is a critical issue in cross-correlation imaging-condition based reverse time migration(RTM),because it requires the operation of the source and receiver wavefields at the same time.The b... The large storage requirement is a critical issue in cross-correlation imaging-condition based reverse time migration(RTM),because it requires the operation of the source and receiver wavefields at the same time.The boundary value method(BVM),based on the finite difference method(FDM),can be used to reconstruct the source wavefield in the reverse time propagation in the same way as the receiver wavefield,which can reduce the storage burden of the RTM data.Considering that the FDM cannot well handle models with discontinuous material properties and rough interfaces,we develop a source wavefield reconstruction strategy based on the finite element method(FEM),using proper orthogonal decomposition(POD)to enhance computational efficiency.In this method,we divide the whole time period into several segments,and construct the POD basis functions to get a reduced order model(ROM)for the source wavefield reconstruction in each segment.We show the corresponding quantitative analysis of the storage requirement of the POD-FEM.Numerical tests on the homogeneous model show the effectiveness of the proposed method,while the layered model and part of the Marmousi model tests indicate that the POD-FEM can keep an excellent balance between computational efficiency and memory usage compared with the full-stored method(FSM)and the BVM,and can be effectively applied in imaging. 展开更多
关键词 Reverse time migration Seismic wavefield reconstruction finite element modeling Proper orthogonal decomposition
下载PDF
COHESIVE ZONE FINITE ELEMENT-BASED MODELING OF HYDRAULIC FRACTURES 被引量:34
18
作者 A.P.Bunger Robert G.Jeffrey 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第5期443-452,共10页
Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient applicat... Hydraulic fracturing is a powerful technology used to stimulate fluid production from reservoirs. The fully 3-D numerical simulation of the hydraulic fracturing process is of great importance to the efficient application of this technology, but is also a great challenge because of the strong nonlinear coupling between the viscous flow of fluid and fracture propagation. By taking advantage of a cohesive zone method to simulate the fracture process, a finite element model based on the existing pore pressure cohesive finite elements has been established to investigate the propagation of a penny-shaped hydraulic fracture in an infinite elastic medium. The effect of cohesive material parameters and fluid viscosity on the hydraulic fracture behaviour has been investigated. Excellent agreement between the finite element results and analytical solutions for the limiting case where the fracture process is dominated by rock fracture toughness demonstrates the ability of the cohesive zone finite element model in simulating the hydraulic fracture growth for this case. 展开更多
关键词 hydraulic fracture cohesive zone model finite element method
下载PDF
Finite element modeling of pore-fluid flow in the Dachang ore district,Guangxi,China:Implications for hydrothermal mineralization 被引量:8
19
作者 Minghui Ju Chongbin Zhao +1 位作者 Tagen Dai Jianwen Yang 《Geoscience Frontiers》 SCIE CAS 2011年第3期463-474,共12页
Convective heat transfer associated with the circulation of porefluid in porous rocks and fractures within the upper crust of the Earth is substantial when the temperature gradient is sufficiently high. In order to un... Convective heat transfer associated with the circulation of porefluid in porous rocks and fractures within the upper crust of the Earth is substantial when the temperature gradient is sufficiently high. In order to understand the process of Snpolymetallic mineralization in the Dachang ore district of Guangxi, a finite element method has been used in this study to simulate both pore-fluid flow and heat transfer in this district. On the basis of related geological, tectonic and geophysical constraints, a computational model was established. It enables a computational simulation and sensitivity analysis to be carried out for investigating ore-forming pore-fluid flow and other key factors that may affect hydrothermal ore genesis in the district. The related simulation results have indicated that: (1) permeable fault zones in the Dacbang ore district can serve as preferential pathways for pore-fluid flow on a regional-scale; and (2) the pore-fluid flow can affect the salinity distribution. This latter factor is part of the reason why Sn-polymetallic mineralization has taken place in this district. 展开更多
关键词 finite element modeling Dachang ore district Hydrothermalmineralization Salinity-induced buoyancy
下载PDF
Finite element model analysis of thermal failure in connector 被引量:7
20
作者 WANG Xin XU Liang-jun 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第3期397-402,共6页
Thermal analysis and thermal diagnose are important for small power connector especially in electronic devices since their structure is usually compact. In this paper thermal behavior of small power connector was inve... Thermal analysis and thermal diagnose are important for small power connector especially in electronic devices since their structure is usually compact. In this paper thermal behavior of small power connector was investigated. It was found that the contact resistance increased due to the Joule beating, and that increased contact resistance produced more Joule heating; this mutual action causes the connector to lose efficiency. The thermal distribution in the connector was analyzed using finite element method (FEM). The failure mechanism is discussed. It provides basis for improving the structure. The conclusion was verified by experimental results. 展开更多
关键词 CONNECTOR Stress relaxation finite element method fem Thermal failure
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部