Micro-bolometer pixel is an essential element in the infrared focal plane array (IRFPA) of infrared detectors. Its response to infrared radiation is analyzed in this paper. The pixel structure is modeled as a compos...Micro-bolometer pixel is an essential element in the infrared focal plane array (IRFPA) of infrared detectors. Its response to infrared radiation is analyzed in this paper. The pixel structure is modeled as a composite laminate thin plate whose sides are measured with the thickness from 0.1-1 μm. Its middle ply is a ferroelectric thin film. Its top surface is covered with a gold or platinum infrared absorber, while the bottom surface is deposited with platinum or lanthanum-nickel. Meanwhile both surfaces are a pair of electrodes. The top surface receives infrared radiation pulses successively. For the very tiny micro bolometer pixel, it is assumed that the infrared radiation is uniformly distributed on the plate. Furthermore, as the ratio of the side length to the thickness of the plate is dramatically large, it is assumed that heat transfer only takes place across the thickness of the plate. The thermal-electric-mechanical coupling governing equations are solved in a form of Fourier series. Results of the displacement, temperature variation and electric output signals of the micro bolometer pixel structure under infrared radiation are obtained, analyzed and compared with experimental data.展开更多
The size effects of the critical behaviors for the systems of interacting spins are discussed extensively inliterature.In this paper,the finite-size dependence of the critical temperature and susceptibility of the fer...The size effects of the critical behaviors for the systems of interacting spins are discussed extensively inliterature.In this paper,the finite-size dependence of the critical temperature and susceptibility of the ferroelectric thinfilm are investigated numerically based on the four-state Potts model with the nearest-neighbor interactions between thedipole moments.The four orientations of the domains exist in the ferroelectric film and the movement of the domainwalls determines the polarization switching process besides the boundary conditions of the film.The critical exponentsare obtained and our investigations show that the boundary conditions play the important roles for the ferroelectricproperties of the thin films and the critical behavior of the thin films strongly depends on the feature of the surface.展开更多
By taking into account structural transition zones near the lateral and thickness direction edges,this paper uses a modified transverse Ising model to study dielectric properties of a finite size ferroelectric thin fi...By taking into account structural transition zones near the lateral and thickness direction edges,this paper uses a modified transverse Ising model to study dielectric properties of a finite size ferroelectric thin film in the framework of the mean-field approximation.The results indicate that the influence of the lateral size on the dielectric susceptibility cannot be neglected and lateral structural transition zones could be a crucial factor that improves the mean susceptibility of the fixed size film.展开更多
By modifying the interchange interactions and the transverse fields on the epitaxy surface layer, this paper studies the phase transition properties of an n-layer ferroelectric thin film by the Fermi-type Green's fun...By modifying the interchange interactions and the transverse fields on the epitaxy surface layer, this paper studies the phase transition properties of an n-layer ferroelectric thin film by the Fermi-type Green's function technique based on the transverse Ising model with a four-spin interaction. The special attention is given to the effect of the epitaxy surface layer on the first-order phase transition properties in the parameter space constructed by the ratios of the bulk transverse field and the bulk four-spin interaction to the bulk two-spin interaction with the framework of the higher-order decoupling approximation to the Fermi-type Green's function. The results show that the first-order phase transition properties will be changed significantly due to the modification of interchange interaction and transverse field parameters on the epitaxy surface layer. The dependence of the first-order phase transition properties on the thickness of ferroelectric thin films is also discussed.展开更多
Bi3.25La0.75Ti3O12(BLT)thin films were prepared on Pt/Ti/SiO2/Si substrate by the sol-gel method.The effect of annealing on their structures and ferroelectric properties was investigated.The XRD patterns indicate th...Bi3.25La0.75Ti3O12(BLT)thin films were prepared on Pt/Ti/SiO2/Si substrate by the sol-gel method.The effect of annealing on their structures and ferroelectric properties was investigated.The XRD patterns indicate that the BLT films annealed at different temperatures are randomly orientated and the single perovskite phase is obtained at 550℃.The remmant polarization increnses and the coercive field decreases with the annealing temperature increasing.The leakage current density of the BLT films annealed at 700℃ is about 5.8×10^-8A/cm^2 at the electrie field of 250kv/cm.展开更多
Many distinguished properties of epitaxial ferroelectric thin films can be tunable through the misfit strain.The strain tunability of ferroelectric and dielectric properties in epitaxial lead titanate ultrathin films ...Many distinguished properties of epitaxial ferroelectric thin films can be tunable through the misfit strain.The strain tunability of ferroelectric and dielectric properties in epitaxial lead titanate ultrathin films is numerically investigated by using a phase field model,in which the surface effect of polarization is taken into account.The response of polarization to the applied electric field in the thickness direction is examined with different misfit strains at room temperature.It is found that a compressive misfit strain increases the coercive field and the remanent polarization while a tensile misfit strain decreases both of them.The nonlinear dielectric constants of the thin films with tensile misfit strains are much larger than those of the thin films without misfit strains,which are attributed to the existence of the a/c/a/c multiple domains in the thin films under tensile misfit strains.展开更多
Polycrystalline Bi_4Ti_3O_(12) thin films with various fractions of a-axis, c-axis and random orientations have been grown on Pt(111)/Ti/Si O_2/Si substrates by laser-ablation under different kinetic growth condit...Polycrystalline Bi_4Ti_3O_(12) thin films with various fractions of a-axis, c-axis and random orientations have been grown on Pt(111)/Ti/Si O_2/Si substrates by laser-ablation under different kinetic growth conditions. The relationship between the structure and ferroelectric property of the films was investigated, so as to explore the possibility of enhancing ferroelectric polarization by controlling the preferred orientation. The structural characterization indicated that the large growth rate and high oxygen background pressure were both favorable for the growth of non-c-axis oriented grains in the Bi_4Ti_3O_(12) thin films. The films with high fractions of a-axis and random orientations, i e, f(a-sxis) = 28.3% and f(random) = 69.6%, could be obtained at the deposition temperature of 973 K, oxygen partial pressure of 15 Pa and laser fluence of 4.6 J/cm^2, respectively. It was also noted that the variation of ferroelectric polarization was in accordance with the evolution non-c-axis orientation. A large value of remanent polarization(2 Pr = 35.5 μC/cm^2) was obtained for the Bi_4Ti_3O_(12) thin films with significant non-c-axis orientation, even higher than that of rare-earth-doped Bi_4Ti_3O_(12) films.展开更多
Effective tuning of nanoscale domain structures provides fundamental basis for controlling and engineering of various functionalities in ferroelectric materials.In this work,we demonstrate the precise patterning of na...Effective tuning of nanoscale domain structures provides fundamental basis for controlling and engineering of various functionalities in ferroelectric materials.In this work,we demonstrate the precise patterning of nanoscopic domain structures in as-grown epitaxial PbTiO_(3)(PTO)films by merely introducing an ultrathin pre-patterned doping layer(e.g.,Fe-doped PTO).The doping layer can effectively reverse the interfacial built-in bias,consequent to a reversed initial polarization reorientation in the as-grown film,which makes it possible to transfer the nano-patterns in the doping layer into the domain structure of ferroelectric films.For instance,we have successfully fabricated large area ordered array of nanoscale cylindrical domains(downward polarization)embedded in the matrix domain with opposite polarization(upward polarization)in PTO film.These nanoscale cylinder domains also allow deterministic and reversible erasure and creation induced by biased tip scanning.The results provide an effective pathway for on-demand patterning of large area nanoscale domains in the as-grown films,which may find applications in a wide range of nanoelectronic devices.展开更多
Intelligent robots have assisted mankind in achieving and operating thousands of functions,especially with the arrival of the artificial intelligent.However,heat dissipation and thermal management in the intelligent r...Intelligent robots have assisted mankind in achieving and operating thousands of functions,especially with the arrival of the artificial intelligent.However,heat dissipation and thermal management in the intelligent robots remain big challenges,which limit their miniaturization and performance.Electrocaloric(EC)materials,which exhibit temperature change in response to the application or withdrawal of an electric field,open a new strategy for cooling technology and have gained a flurry of research interest in recent years.Toward artificial intelligent self-cooling electronic skins,large-scale flexible materials with high EC effect near room temperature are in demand.Here,we report a large room temperature EC effect in flexible Pb_(0.82)Ba_(0.08)La_(0.1)Zr0.9Ti_(0.1)O_(3)(PBLZT)inorganic thin films via a transfer-free cost-effective sol-gel process,assisted by unique two-dimensional mica substrates.The maximum adiabatic temperature change and isothermal entropy change of the flexible PBLZT thin films reach to 22.5 K and 25.9 J K^(-1) kg^(-1) at room temperature.In particular,the flexible PBLZT thin films exhibit a stable EC effect both under bending state and after bending for 20000 times.Our flexible EC materials offer an alternative strategy to the development of cooling technologies for both artificial intelligent robots and personal wearable cooling devices.展开更多
Modulation of light underpins a central part of modern optoelectronics.Con-ventional optical modulators based on refractive-index and absorption varia-tion in the presence of an electric field serve as the workhorse f...Modulation of light underpins a central part of modern optoelectronics.Con-ventional optical modulators based on refractive-index and absorption varia-tion in the presence of an electric field serve as the workhorse for diverse photonic technologies.However,these approaches based on electro-refraction or electro-absorption effect impose limitations on frequency converting and signal amplification.Lanthanide-activated phosphors offer a promising plat-form for nonlinear frequency conversion with an abundant spectrum.Here,we propose a novel approach to achieve frequency conversion and digital modula-tion of light signal by coupling lanthanide luminescence with an electrically responsive ferroelectric host.The technological benefits of such paradigm-shifting solution are highlighted by demonstrating a quasi-continuous and enhancement of the lanthanide luminescence.The ability to locally manipulate light emission can convert digital information signals into visible waveforms,and visualize electrical logic and arithmetic operations.The proof-of-concept device exhibits perspectives for developing light-compatible logic functions.These results pave the way to design more controllable lanthanide photonics with desired opto-electronic coupling.展开更多
基金supported by the Ph.D. Programs Foundation of Ministry of Education of China (No.20050247004)
文摘Micro-bolometer pixel is an essential element in the infrared focal plane array (IRFPA) of infrared detectors. Its response to infrared radiation is analyzed in this paper. The pixel structure is modeled as a composite laminate thin plate whose sides are measured with the thickness from 0.1-1 μm. Its middle ply is a ferroelectric thin film. Its top surface is covered with a gold or platinum infrared absorber, while the bottom surface is deposited with platinum or lanthanum-nickel. Meanwhile both surfaces are a pair of electrodes. The top surface receives infrared radiation pulses successively. For the very tiny micro bolometer pixel, it is assumed that the infrared radiation is uniformly distributed on the plate. Furthermore, as the ratio of the side length to the thickness of the plate is dramatically large, it is assumed that heat transfer only takes place across the thickness of the plate. The thermal-electric-mechanical coupling governing equations are solved in a form of Fourier series. Results of the displacement, temperature variation and electric output signals of the micro bolometer pixel structure under infrared radiation are obtained, analyzed and compared with experimental data.
基金the Center for Smart Materials of The Hong Kong Polytechnic University the Earmarked Research Grant(Account No.B-Q 363)allocated by the Hong Kong Research Grants Council
文摘The size effects of the critical behaviors for the systems of interacting spins are discussed extensively inliterature.In this paper,the finite-size dependence of the critical temperature and susceptibility of the ferroelectric thinfilm are investigated numerically based on the four-state Potts model with the nearest-neighbor interactions between thedipole moments.The four orientations of the domains exist in the ferroelectric film and the movement of the domainwalls determines the polarization switching process besides the boundary conditions of the film.The critical exponentsare obtained and our investigations show that the boundary conditions play the important roles for the ferroelectricproperties of the thin films and the critical behavior of the thin films strongly depends on the feature of the surface.
文摘By taking into account structural transition zones near the lateral and thickness direction edges,this paper uses a modified transverse Ising model to study dielectric properties of a finite size ferroelectric thin film in the framework of the mean-field approximation.The results indicate that the influence of the lateral size on the dielectric susceptibility cannot be neglected and lateral structural transition zones could be a crucial factor that improves the mean susceptibility of the fixed size film.
基金Project supported partly by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China(Grant No. 60721001)
文摘By modifying the interchange interactions and the transverse fields on the epitaxy surface layer, this paper studies the phase transition properties of an n-layer ferroelectric thin film by the Fermi-type Green's function technique based on the transverse Ising model with a four-spin interaction. The special attention is given to the effect of the epitaxy surface layer on the first-order phase transition properties in the parameter space constructed by the ratios of the bulk transverse field and the bulk four-spin interaction to the bulk two-spin interaction with the framework of the higher-order decoupling approximation to the Fermi-type Green's function. The results show that the first-order phase transition properties will be changed significantly due to the modification of interchange interaction and transverse field parameters on the epitaxy surface layer. The dependence of the first-order phase transition properties on the thickness of ferroelectric thin films is also discussed.
文摘Bi3.25La0.75Ti3O12(BLT)thin films were prepared on Pt/Ti/SiO2/Si substrate by the sol-gel method.The effect of annealing on their structures and ferroelectric properties was investigated.The XRD patterns indicate that the BLT films annealed at different temperatures are randomly orientated and the single perovskite phase is obtained at 550℃.The remmant polarization increnses and the coercive field decreases with the annealing temperature increasing.The leakage current density of the BLT films annealed at 700℃ is about 5.8×10^-8A/cm^2 at the electrie field of 250kv/cm.
基金the financial support from the National Nature Science Foundation of China (Grants Nos.11002123 and 10832009)Zhejiang Provincial Qianjiang Talent Fund(E9027)Key Innovation Fund(2009R50025)
文摘Many distinguished properties of epitaxial ferroelectric thin films can be tunable through the misfit strain.The strain tunability of ferroelectric and dielectric properties in epitaxial lead titanate ultrathin films is numerically investigated by using a phase field model,in which the surface effect of polarization is taken into account.The response of polarization to the applied electric field in the thickness direction is examined with different misfit strains at room temperature.It is found that a compressive misfit strain increases the coercive field and the remanent polarization while a tensile misfit strain decreases both of them.The nonlinear dielectric constants of the thin films with tensile misfit strains are much larger than those of the thin films without misfit strains,which are attributed to the existence of the a/c/a/c multiple domains in the thin films under tensile misfit strains.
基金Funded by the International Science and Technology Cooperation Project of Hubei Province(2016AHB008)the Natural Science Foundation of Hubei Province(2015CFB724,2016CFA006)+1 种基金the National Natural Science Foundation of China(51272195,51521001)the National Key Research and Development Program of China(2017YFB0310400)
文摘Polycrystalline Bi_4Ti_3O_(12) thin films with various fractions of a-axis, c-axis and random orientations have been grown on Pt(111)/Ti/Si O_2/Si substrates by laser-ablation under different kinetic growth conditions. The relationship between the structure and ferroelectric property of the films was investigated, so as to explore the possibility of enhancing ferroelectric polarization by controlling the preferred orientation. The structural characterization indicated that the large growth rate and high oxygen background pressure were both favorable for the growth of non-c-axis oriented grains in the Bi_4Ti_3O_(12) thin films. The films with high fractions of a-axis and random orientations, i e, f(a-sxis) = 28.3% and f(random) = 69.6%, could be obtained at the deposition temperature of 973 K, oxygen partial pressure of 15 Pa and laser fluence of 4.6 J/cm^2, respectively. It was also noted that the variation of ferroelectric polarization was in accordance with the evolution non-c-axis orientation. A large value of remanent polarization(2 Pr = 35.5 μC/cm^2) was obtained for the Bi_4Ti_3O_(12) thin films with significant non-c-axis orientation, even higher than that of rare-earth-doped Bi_4Ti_3O_(12) films.
基金The authors would like to acknowledge the financial support from the National Natural Science Foundation of China(Grant Nos.92163210,11674108,52002134)Funding by Science and Technology Projects in Guangzhou(202201000008)+1 种基金the Science and Technology Planning Project of Guangdong Province(No.2019KQNCX028)the Natural Science Foundation of South China Normal University(No.19KJ01)。
文摘Effective tuning of nanoscale domain structures provides fundamental basis for controlling and engineering of various functionalities in ferroelectric materials.In this work,we demonstrate the precise patterning of nanoscopic domain structures in as-grown epitaxial PbTiO_(3)(PTO)films by merely introducing an ultrathin pre-patterned doping layer(e.g.,Fe-doped PTO).The doping layer can effectively reverse the interfacial built-in bias,consequent to a reversed initial polarization reorientation in the as-grown film,which makes it possible to transfer the nano-patterns in the doping layer into the domain structure of ferroelectric films.For instance,we have successfully fabricated large area ordered array of nanoscale cylindrical domains(downward polarization)embedded in the matrix domain with opposite polarization(upward polarization)in PTO film.These nanoscale cylinder domains also allow deterministic and reversible erasure and creation induced by biased tip scanning.The results provide an effective pathway for on-demand patterning of large area nanoscale domains in the as-grown films,which may find applications in a wide range of nanoelectronic devices.
基金the National Natural Science Foundation of China(51602156,51790492 and 11874032)the Natural Science Foundation of Jiangsu Province,China(BK20160824)the Fundamental Research Funds for the Central Universities(30916011208 and 30916011104).
文摘Intelligent robots have assisted mankind in achieving and operating thousands of functions,especially with the arrival of the artificial intelligent.However,heat dissipation and thermal management in the intelligent robots remain big challenges,which limit their miniaturization and performance.Electrocaloric(EC)materials,which exhibit temperature change in response to the application or withdrawal of an electric field,open a new strategy for cooling technology and have gained a flurry of research interest in recent years.Toward artificial intelligent self-cooling electronic skins,large-scale flexible materials with high EC effect near room temperature are in demand.Here,we report a large room temperature EC effect in flexible Pb_(0.82)Ba_(0.08)La_(0.1)Zr0.9Ti_(0.1)O_(3)(PBLZT)inorganic thin films via a transfer-free cost-effective sol-gel process,assisted by unique two-dimensional mica substrates.The maximum adiabatic temperature change and isothermal entropy change of the flexible PBLZT thin films reach to 22.5 K and 25.9 J K^(-1) kg^(-1) at room temperature.In particular,the flexible PBLZT thin films exhibit a stable EC effect both under bending state and after bending for 20000 times.Our flexible EC materials offer an alternative strategy to the development of cooling technologies for both artificial intelligent robots and personal wearable cooling devices.
基金the financial support from the National Natural Science Foundation of China(No.52233014,12074044,11874230,12274243)the Research Grants Council of Hong Kong(PolyU SRFS2122-5S02)+1 种基金the Fund of State Key Laboratory of Information Photonics and Optical Communications(IPOC2021ZT05,IPOC2022A02)the Fundamental Research Funds for the Central Universities(BUPT).
文摘Modulation of light underpins a central part of modern optoelectronics.Con-ventional optical modulators based on refractive-index and absorption varia-tion in the presence of an electric field serve as the workhorse for diverse photonic technologies.However,these approaches based on electro-refraction or electro-absorption effect impose limitations on frequency converting and signal amplification.Lanthanide-activated phosphors offer a promising plat-form for nonlinear frequency conversion with an abundant spectrum.Here,we propose a novel approach to achieve frequency conversion and digital modula-tion of light signal by coupling lanthanide luminescence with an electrically responsive ferroelectric host.The technological benefits of such paradigm-shifting solution are highlighted by demonstrating a quasi-continuous and enhancement of the lanthanide luminescence.The ability to locally manipulate light emission can convert digital information signals into visible waveforms,and visualize electrical logic and arithmetic operations.The proof-of-concept device exhibits perspectives for developing light-compatible logic functions.These results pave the way to design more controllable lanthanide photonics with desired opto-electronic coupling.