On augmentation of past work, an effective Wiener filter and its application for noise suppression combined with a formed CORDIC based FFT/IFFT processor with improved speed were executed. The pipelined methodology wa...On augmentation of past work, an effective Wiener filter and its application for noise suppression combined with a formed CORDIC based FFT/IFFT processor with improved speed were executed. The pipelined methodology was embraced for expanding the execution of the system. The proposed Wiener filter was planned in such an approach to evacuate the iteration issues in ordinary Wiener filter. The division process was supplanted by a productive inverse and multiplication process in the proposed design. An enhanced design for matrix inverse with reduced computation complexity was executed. The wide-ranging framework processing was focused around IEEE-754 standard single precision floating point numbers. The Wiener filter and the entire system design was integrated and actualized on VIRTEX 5 FPGA stage and re-enacted to approve the results in Xilinx ISE 13.4. The results show that a productive decrease in power and area is developed by adjusting the proposed technique for speech signal noise degradation with latency of n/2 clock cycles and substantial throughput result per every 12 clock cycles for n-bit precision. The execution of proposed design is exposed to be 31.35% more effective than that of prevailing strategies.展开更多
The IEEE 802. 16 standard specifies the air interface of wireless metropolitan area network (WMAN), and aims to provide wireless broadband access for integrated voice and video services. This paper presents the effi...The IEEE 802. 16 standard specifies the air interface of wireless metropolitan area network (WMAN), and aims to provide wireless broadband access for integrated voice and video services. This paper presents the efficient design and implementation of fast Frouier transform (FFT) and inverse fast Frouier transform (IFFT) for the application in IEEE 802. 16d orthogoual frequency division multiplexing (OFDM) system. In this design, a novel pipeline structure for the branch of butterfly unit (BU) is proposed, which can improve the processing symbol rate by adding the number of branch flexibly. The symmetrical ping-pang structure of random access memory (RAM) is performed to increase the system throughput. Simulation results reveal that only with 1 branch of BU, the proposed FFF/IFFT design can almost achieve the maximum bandwidth requirement of IEEE 802. 16d OFDM system. And this design has been verified by FPGA and successfully implemented in the prototype of WiMAX transceiver.展开更多
文摘On augmentation of past work, an effective Wiener filter and its application for noise suppression combined with a formed CORDIC based FFT/IFFT processor with improved speed were executed. The pipelined methodology was embraced for expanding the execution of the system. The proposed Wiener filter was planned in such an approach to evacuate the iteration issues in ordinary Wiener filter. The division process was supplanted by a productive inverse and multiplication process in the proposed design. An enhanced design for matrix inverse with reduced computation complexity was executed. The wide-ranging framework processing was focused around IEEE-754 standard single precision floating point numbers. The Wiener filter and the entire system design was integrated and actualized on VIRTEX 5 FPGA stage and re-enacted to approve the results in Xilinx ISE 13.4. The results show that a productive decrease in power and area is developed by adjusting the proposed technique for speech signal noise degradation with latency of n/2 clock cycles and substantial throughput result per every 12 clock cycles for n-bit precision. The execution of proposed design is exposed to be 31.35% more effective than that of prevailing strategies.
基金Sponsored by the National Natural Science Foundation of China(Grant No.60425413)
文摘The IEEE 802. 16 standard specifies the air interface of wireless metropolitan area network (WMAN), and aims to provide wireless broadband access for integrated voice and video services. This paper presents the efficient design and implementation of fast Frouier transform (FFT) and inverse fast Frouier transform (IFFT) for the application in IEEE 802. 16d orthogoual frequency division multiplexing (OFDM) system. In this design, a novel pipeline structure for the branch of butterfly unit (BU) is proposed, which can improve the processing symbol rate by adding the number of branch flexibly. The symmetrical ping-pang structure of random access memory (RAM) is performed to increase the system throughput. Simulation results reveal that only with 1 branch of BU, the proposed FFF/IFFT design can almost achieve the maximum bandwidth requirement of IEEE 802. 16d OFDM system. And this design has been verified by FPGA and successfully implemented in the prototype of WiMAX transceiver.