期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Swelling-induced finite bending of functionally graded pH-responsive hydrogels:a semi-analytical method 被引量:1
1
作者 M.SHOJAEIFARD M.R.BAYAT M.BAGHANI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第5期679-694,共16页
Recently, pH-sensitive hydrogels have been utilized in the diverse applications including sensors, switches, and actuators. In order to have continuous stress and deformation ?elds, a new semi-analytical approach is d... Recently, pH-sensitive hydrogels have been utilized in the diverse applications including sensors, switches, and actuators. In order to have continuous stress and deformation ?elds, a new semi-analytical approach is developed to predict the swelling induced?nite bending for a functionally graded(FG) layer composed of a pH-sensitive hydrogel,in which the cross-link density is continuously distributed along the thickness direction under the plane strain condition. Without considering the intermediary virtual reference,the initial state is mapped into the deformed con?guration in a circular shape by utilizing a total deformation gradient tensor stemming from the inhomogeneous swelling of an FG layer in response to the variation of the pH value of the solvent. To enlighten the capability of the presented analytical method, the ?nite element method(FEM) is used to verify the accuracy of the analytical results in some case studies. The perfect agreement con-?rms the accuracy of the presented method. Due to the applicability of FG pH-sensitive hydrogels, some design factors such as the semi-angle, the bending curvature, the aspect ratio, and the distributions of deformation and stress ?elds are studied. Furthermore, the tangential free-stress axes are illustrated in deformed con?guration. 展开更多
关键词 pH-sensitive hydrogel functionally graded(FG)layer finite bending semianalytical solution finite element method(FEM)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部