In view of the many scenes of unmanned aerial vehicle(UAV)detection,a third-party signal source is used to design a receiver to monitor the UAV.It is of great significance to understand the reflection of the signal il...In view of the many scenes of unmanned aerial vehicle(UAV)detection,a third-party signal source is used to design a receiver to monitor the UAV.It is of great significance to understand the reflection of the signal illuminating the UAV.Taking the communication base station(BS)signal as the third-party signal source,and considering the complete transmission link,reflection changes and loss fading of the communication signal,this study conducts model fitting for irregular UAV targets,simplifying complex targets into a combination of simple targets.Furthermore,the influence of the dielectric constant of the target surface and the signal irradiation angle on the signal reflection is analyzed.The analysis shows that the simulation results of this model fitting method are consistent with the results of other literature,which provides theoretical support for the detection of low and slow small targets such as UAVs.展开更多
An effective model(image to wrinkle, ITW) for garment fitting evaluation is presented. The proposed model is to improve the accuracy of garment fitting evaluation based on dressing image. The ITW model is an objective...An effective model(image to wrinkle, ITW) for garment fitting evaluation is presented. The proposed model is to improve the accuracy of garment fitting evaluation based on dressing image. The ITW model is an objective evaluation model of fitting based on the wrinkle index of dressing image. The ITW model consists of two main steps, the gray curve-fitting(GCF) threshold segmentation algorithm and Canny edge detection algorithm. In the ITW model, three types of wrinkle trends are defined. And the network dressing image is evaluated and simulated by three quantitative indexes: wrinkle number, wrinkle regularity and wrinkle unevenness. Finally, the fitness of three kinds of dress effects(tight, fit and loose) is quantified by objective fitting evaluation model.展开更多
Fine grids with small spacing in boundary-fitted coordinates are normally used to treat the computation of fluid dynamics for estuarine areas and tidal flats. However, the adoption of Cartesian components of velocity ...Fine grids with small spacing in boundary-fitted coordinates are normally used to treat the computation of fluid dynamics for estuarine areas and tidal flats. However, the adoption of Cartesian components of velocity vectors in this kind of non-orthogonal coordinates will definitely result in a difficulty in solving implicitly the transformed momentum equations, and also complicate the wet-dry point judgement used for flood areas. To solve this problem, equations in terms of generalized contravariant velocity vectors in curvilinear coordinates are derived in the present study, by virtue of which, an Alternative-Direction-Implicit numerical scheme in non-orthogonal grids would then be easily obtained, and wet-dry point judgement would as well be largely simplified. A comparison is made between the explicit scheme and implicit scheme, showing that the present model is accurate and numerically stable for computations of fluid dynamics for estuarine areas and tidal flats.展开更多
Finite-difference(FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transfo...Finite-difference(FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transformation to curvilinear coordinates using body-fitted grids have been proposed, e.g., stand staggered grid(SSG) with interpolation, nonstaggered grid, rotated staggered grid(RSG), and fully staggered. The FD based on the RSG is somewhat superior to others because it satisfies the spatial distribution of the wave equation without additional memory and computational requirements; furthermore, it is simpler to implement. We use the RSG FD method to transform the firstorder stress–velocity equation in the curvilinear coordinates system and introduce the highprecision adaptive, unilateral mimetic finite-difference(UMFD) method to process the freeboundary conditions of an irregular surface. The numerical results suggest that the precision of the solution is higher than that of the vacuum formalism. When the minimum wavelength is low, UMFD avoids the surface wave dispersion. We compare FD methods based on RSG, SEM, and nonstaggered grid and infer that all simulation results are consistent but the computational efficiency of the RSG FD method is higher than the rest.展开更多
River ice is a natural phenomenon in cold regions, influenced by meteorology, geomorphology, and hydraulic conditions. River ice processes involve complex interactions between hydrodynamic, mechanical, and thermal pro...River ice is a natural phenomenon in cold regions, influenced by meteorology, geomorphology, and hydraulic conditions. River ice processes involve complex interactions between hydrodynamic, mechanical, and thermal processes, and they are also influenced by weather and hydrologic conditions. Because natural rivers are serpentine, with bends, narrows, and straight reaches, the commonly-used one-dimensional river ice models and two-dimensional models based on the rectangular Cartesian coordinates are incapable of simulating the physical phenomena accurately. In order to accurately simulate the complicated river geometry and overcome the difficulties of numerical simulation resulting from both complex boundaries and differences between length and width scales, a two-dimensional river ice numerical model based on a boundary-fitted coordinate transformation method was developed. The presented model considers the influence of the frazil ice accumulation under ice cover and the shape of the leading edge of ice cover during the freezing process. The model is capable of determining the velocity field, the distribution of water temperature, the concentration distribution of frazil ice, the transport of floating ice, the progression, stability, and thawing of ice cover, and the transport, accumulation, and erosion of ice under ice cover. A MacCormack scheme was used to solve the equations numerically. The model was validated with field observations from the Hequ Reach of the Yellow River. Comparison of simulation results with field data indicates that the model is capable of simulating the river ice process with high accuracy.展开更多
The logistic regression model has been become commonly used to study the association between a binary response variable;it is widespread application rests on its easy application and interpretation. The subject of ass...The logistic regression model has been become commonly used to study the association between a binary response variable;it is widespread application rests on its easy application and interpretation. The subject of assessment of goodness-of-fit in logistic regression model has attracted the attention of many scientists and researchers. Goodness-of-fit tests are methods to determine the suitability of the fitted model. Many of methods proposed and discussed for assessing goodness-of fit in logistic regression model, however, the asymptotic distribution of goodness-of-fit statistics are less examine, it is need more investigated. This work, will focus on assessing the behavior of asymptotic distribution of goodness-of-fit tests, also make comparison between global goodness-of-fit tests, and evaluate it by simulation.展开更多
In this study, the momentum equations describing an atmospheric flow over a NW Pacific region of Mexico are solved numerically. In order to capture the complex flow-topography interactions with detail, a combination o...In this study, the momentum equations describing an atmospheric flow over a NW Pacific region of Mexico are solved numerically. In order to capture the complex flow-topography interactions with detail, a combination of a numerical wind model in full 3D curvilinear coordinates, along with a high resolution boundary-fitted grid is used. Boundary conditions were obtained from ten years (2002-2012) of measured offshore wind data. Prevailing winds from April to September during that period of observations were selected for the simulations. For the cases analyzed, it was found that at the points of the study region (PSS, PSM, PM), wind speed increased about 10% to 20% of its offshore values, while inland they decreased about 86% to 96%. This spatial behavior agreed very well with the observed local winds. A coastal jet (CJ), 35 km long with speeds about 1.5 - 2 m/s, emanating from PSS was found for NNW winds. Modeled winds were also used to compute wind stresses, wind stress curl, and CUI fields. Wind stress values agreed very well to those reported in the literature. High values of wind stress curl, and CUI were found at the lee of the points (PSS, PSM, PM). Indirect estimations of sea surface currents were about 15 - 20 cm/s offshore and 5 - 10 cm/s at the coast.展开更多
This paper starts with untime-diversification of the time-diversification deformation model and gives displacement distribution model of untime-diversification and simplifies further the study of deformation model. Th...This paper starts with untime-diversification of the time-diversification deformation model and gives displacement distribution model of untime-diversification and simplifies further the study of deformation model. The paper discusses the problem of least squares fitting of coordinate parameters model—parameters of deformation model. During discussion, the basic means of cubic B splines and two steps of multidimensional disorder datum fitting are adopted which can make fitting function calculated mostly approximate coordinate parameters model and it can make calculation easier.展开更多
基金supported by the State Major Research and Development Project(2018YFB1802004)the State Key Laboratory of Air Traffic Management System and Technology(SKLATM201807)。
文摘In view of the many scenes of unmanned aerial vehicle(UAV)detection,a third-party signal source is used to design a receiver to monitor the UAV.It is of great significance to understand the reflection of the signal illuminating the UAV.Taking the communication base station(BS)signal as the third-party signal source,and considering the complete transmission link,reflection changes and loss fading of the communication signal,this study conducts model fitting for irregular UAV targets,simplifying complex targets into a combination of simple targets.Furthermore,the influence of the dielectric constant of the target surface and the signal irradiation angle on the signal reflection is analyzed.The analysis shows that the simulation results of this model fitting method are consistent with the results of other literature,which provides theoretical support for the detection of low and slow small targets such as UAVs.
文摘An effective model(image to wrinkle, ITW) for garment fitting evaluation is presented. The proposed model is to improve the accuracy of garment fitting evaluation based on dressing image. The ITW model is an objective evaluation model of fitting based on the wrinkle index of dressing image. The ITW model consists of two main steps, the gray curve-fitting(GCF) threshold segmentation algorithm and Canny edge detection algorithm. In the ITW model, three types of wrinkle trends are defined. And the network dressing image is evaluated and simulated by three quantitative indexes: wrinkle number, wrinkle regularity and wrinkle unevenness. Finally, the fitness of three kinds of dress effects(tight, fit and loose) is quantified by objective fitting evaluation model.
基金National Natural Science Foundation of China and National Excellent Youth Foundation of China.(Grant No.49606069)
文摘Fine grids with small spacing in boundary-fitted coordinates are normally used to treat the computation of fluid dynamics for estuarine areas and tidal flats. However, the adoption of Cartesian components of velocity vectors in this kind of non-orthogonal coordinates will definitely result in a difficulty in solving implicitly the transformed momentum equations, and also complicate the wet-dry point judgement used for flood areas. To solve this problem, equations in terms of generalized contravariant velocity vectors in curvilinear coordinates are derived in the present study, by virtue of which, an Alternative-Direction-Implicit numerical scheme in non-orthogonal grids would then be easily obtained, and wet-dry point judgement would as well be largely simplified. A comparison is made between the explicit scheme and implicit scheme, showing that the present model is accurate and numerically stable for computations of fluid dynamics for estuarine areas and tidal flats.
基金supported by the National Nature Science Foundation of China(Nos.41504102 and 41604037)National Science and Technology Major Project(No.2016ZX05015-006)Yangtze University Youth Found(No.2015cqn32)
文摘Finite-difference(FD) methods are widely used in seismic forward modeling owing to their computational efficiency but are not readily applicable to irregular topographies. Thus, several FD methods based on the transformation to curvilinear coordinates using body-fitted grids have been proposed, e.g., stand staggered grid(SSG) with interpolation, nonstaggered grid, rotated staggered grid(RSG), and fully staggered. The FD based on the RSG is somewhat superior to others because it satisfies the spatial distribution of the wave equation without additional memory and computational requirements; furthermore, it is simpler to implement. We use the RSG FD method to transform the firstorder stress–velocity equation in the curvilinear coordinates system and introduce the highprecision adaptive, unilateral mimetic finite-difference(UMFD) method to process the freeboundary conditions of an irregular surface. The numerical results suggest that the precision of the solution is higher than that of the vacuum formalism. When the minimum wavelength is low, UMFD avoids the surface wave dispersion. We compare FD methods based on RSG, SEM, and nonstaggered grid and infer that all simulation results are consistent but the computational efficiency of the RSG FD method is higher than the rest.
基金supported by the National Natural Science Foundation of China(Grant No.50579030)
文摘River ice is a natural phenomenon in cold regions, influenced by meteorology, geomorphology, and hydraulic conditions. River ice processes involve complex interactions between hydrodynamic, mechanical, and thermal processes, and they are also influenced by weather and hydrologic conditions. Because natural rivers are serpentine, with bends, narrows, and straight reaches, the commonly-used one-dimensional river ice models and two-dimensional models based on the rectangular Cartesian coordinates are incapable of simulating the physical phenomena accurately. In order to accurately simulate the complicated river geometry and overcome the difficulties of numerical simulation resulting from both complex boundaries and differences between length and width scales, a two-dimensional river ice numerical model based on a boundary-fitted coordinate transformation method was developed. The presented model considers the influence of the frazil ice accumulation under ice cover and the shape of the leading edge of ice cover during the freezing process. The model is capable of determining the velocity field, the distribution of water temperature, the concentration distribution of frazil ice, the transport of floating ice, the progression, stability, and thawing of ice cover, and the transport, accumulation, and erosion of ice under ice cover. A MacCormack scheme was used to solve the equations numerically. The model was validated with field observations from the Hequ Reach of the Yellow River. Comparison of simulation results with field data indicates that the model is capable of simulating the river ice process with high accuracy.
文摘The logistic regression model has been become commonly used to study the association between a binary response variable;it is widespread application rests on its easy application and interpretation. The subject of assessment of goodness-of-fit in logistic regression model has attracted the attention of many scientists and researchers. Goodness-of-fit tests are methods to determine the suitability of the fitted model. Many of methods proposed and discussed for assessing goodness-of fit in logistic regression model, however, the asymptotic distribution of goodness-of-fit statistics are less examine, it is need more investigated. This work, will focus on assessing the behavior of asymptotic distribution of goodness-of-fit tests, also make comparison between global goodness-of-fit tests, and evaluate it by simulation.
文摘In this study, the momentum equations describing an atmospheric flow over a NW Pacific region of Mexico are solved numerically. In order to capture the complex flow-topography interactions with detail, a combination of a numerical wind model in full 3D curvilinear coordinates, along with a high resolution boundary-fitted grid is used. Boundary conditions were obtained from ten years (2002-2012) of measured offshore wind data. Prevailing winds from April to September during that period of observations were selected for the simulations. For the cases analyzed, it was found that at the points of the study region (PSS, PSM, PM), wind speed increased about 10% to 20% of its offshore values, while inland they decreased about 86% to 96%. This spatial behavior agreed very well with the observed local winds. A coastal jet (CJ), 35 km long with speeds about 1.5 - 2 m/s, emanating from PSS was found for NNW winds. Modeled winds were also used to compute wind stresses, wind stress curl, and CUI fields. Wind stress values agreed very well to those reported in the literature. High values of wind stress curl, and CUI were found at the lee of the points (PSS, PSM, PM). Indirect estimations of sea surface currents were about 15 - 20 cm/s offshore and 5 - 10 cm/s at the coast.
文摘This paper starts with untime-diversification of the time-diversification deformation model and gives displacement distribution model of untime-diversification and simplifies further the study of deformation model. The paper discusses the problem of least squares fitting of coordinate parameters model—parameters of deformation model. During discussion, the basic means of cubic B splines and two steps of multidimensional disorder datum fitting are adopted which can make fitting function calculated mostly approximate coordinate parameters model and it can make calculation easier.