期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于复杂性的软件缺陷预测
被引量:
2
1
作者
冯大成
陈丽容
《计算机工程与设计》
CSCD
北大核心
2011年第1期213-217,共5页
为解决软件缺陷预测问题引入了最小二乘支持向量机算法(LS-SVM),加速了超参数的选择过程,给出了逐个加入新的样本用以模型校正的快捷方法,以软件复杂性度量为线索,建立了基于FLS-SVM的软件缺陷预测模型。通过具体实例阐明了模型的执行...
为解决软件缺陷预测问题引入了最小二乘支持向量机算法(LS-SVM),加速了超参数的选择过程,给出了逐个加入新的样本用以模型校正的快捷方法,以软件复杂性度量为线索,建立了基于FLS-SVM的软件缺陷预测模型。通过具体实例阐明了模型的执行过程及小样本情况下比神经网络更为出色的预测能力,并根据回归方程指出了对软件缺陷影响显著的复杂性度量。
展开更多
关键词
软件复杂性
软件缺陷预测
因子分析
最小二乘支持向量机
fls-svm
神经网络
下载PDF
职称材料
题名
基于复杂性的软件缺陷预测
被引量:
2
1
作者
冯大成
陈丽容
机构
中国航天科工集团第二研究院
出处
《计算机工程与设计》
CSCD
北大核心
2011年第1期213-217,共5页
文摘
为解决软件缺陷预测问题引入了最小二乘支持向量机算法(LS-SVM),加速了超参数的选择过程,给出了逐个加入新的样本用以模型校正的快捷方法,以软件复杂性度量为线索,建立了基于FLS-SVM的软件缺陷预测模型。通过具体实例阐明了模型的执行过程及小样本情况下比神经网络更为出色的预测能力,并根据回归方程指出了对软件缺陷影响显著的复杂性度量。
关键词
软件复杂性
软件缺陷预测
因子分析
最小二乘支持向量机
fls-svm
神经网络
Keywords
software complexity
software defect predict
factor analysis
least squares support vectormachine
fls-svm
neural network
分类号
TP311.5 [自动化与计算机技术—计算机软件与理论]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于复杂性的软件缺陷预测
冯大成
陈丽容
《计算机工程与设计》
CSCD
北大核心
2011
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部