期刊文献+
共找到1,389篇文章
< 1 2 70 >
每页显示 20 50 100
Analysis of temperature field for a surface-mounted and interior permanent magnet synchronous motor adopting magnetic-thermal coupling method 被引量:3
1
作者 Jikai Si Suzhen Zhao +2 位作者 Haichao Feng Yihua Hu Wenping Cao 《CES Transactions on Electrical Machines and Systems》 2018年第1期166-174,共9页
Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-the... Aiming at obtaining high power density of surface-mounted and interior permanent magnet synchronous motor(SIPMSM),it is important to accurately calculate the temperature field distribution of SIPMSM,and a magnetic-thermal coupling method is proposed.The magnetic-thermal coupling mechanism is analyzed.The thermal network model and finite element model are built by this method,respectively.The effects of power frequency on iron losses and temperature fields are analyzed by the magnetic-thermal coupling finite element model under the condition of rated load,and the relationship between the load and temperature field is researched under the condition of the synchronous speed.In addition,the equivalent thermal network model is used to verify the magnetic-thermal coupling method.Then the temperatures of various nodes are obtained.The results show that there are advantages in both computational efficiency and accuracy for the proposed coupling method,which can be applied to other permanent magnet motors with complex structures. 展开更多
关键词 Equivalent thermal network method magnetic-thermal coupling method power frequency iron loss surface-mounted and interior permanent magnet synchronous motor(SIPMSM) temperature field
下载PDF
Flow Field and Temperature Field of Water-Cooling-Type Magnetic Coupling 被引量:2
2
作者 Lei Wang Zhenyuan Jia +1 位作者 Yuqin Zhu Li Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2019年第4期61-72,共12页
At present, the water-cooling simulation of the water-cooled magnetic coupler is based on the water-cooled motor and the hydraulic coupler, which cannot accurately characterize the temperature distribution of the rota... At present, the water-cooling simulation of the water-cooled magnetic coupler is based on the water-cooled motor and the hydraulic coupler, which cannot accurately characterize the temperature distribution of the rotating watercooled coupling of the coupler. Focusing on rotating water cooling radiating, the present paper proposes simulating the water cooling temperature field as well as the flow field through the method of combining fluid-solid coupled heat transfer and MRF(Multiphase Reference Frame). In addition, taking an 800 kW magnetic coupling as an example, the paper optimizes the shape, number, cooling water inlet speed? and so on? of the cooling channel. Considering factors such as the complete machine’s temperature, and drag torque, it is proved that the cooling e ect is best when there are 36 involute curved channels and when the inlet speed is 3 m/s. Further, through experiments, the actual temperature values at six di erent positions when 50 kW and 70 kW thermal losses di er are measured. The measured values agree with the simulation results, proving the correctness of the proposed method. Further, data have been collected during the entire experimental procedure? and the variation in the coupling’s temperature is analyzed in depth, with the objective of laying a foundation for the estimation of the inner temperature rise as well as for the optimization of the structural design. 展开更多
关键词 Water-cooling MAGNETIC coupling Fluid-solid coupling Channel Three-dimensional temperature field
下载PDF
Numerical Investigation on the Flow and Temperature Fields in an Inductively Coupled Plasma Reactor 被引量:1
3
作者 吴彬 林烈 +1 位作者 张秀杰 吴承康 《Plasma Science and Technology》 SCIE EI CAS CSCD 2000年第6期565-571,共7页
This paper gives a numerical study on the flow and temperature fields in an induced plasma reactor, which worked in 0.5 ATM with air as a working gas. We employed a two-dimensional mode of an inductively coupled plas... This paper gives a numerical study on the flow and temperature fields in an induced plasma reactor, which worked in 0.5 ATM with air as a working gas. We employed a two-dimensional mode of an inductively coupled plasma to calculate the temperature and flow field of the reactor as well as the generator. The algorithm is based on the solutions of the two-dimensional continuity, momentum, and energy equations in term of vorticity, stream function and enthalpy. An upwind finite-difference scheme was adopted to solve those equations with appropriate boundary conditions. The computed results show that there is a flat region with little parameter change in the reactor, that the diameter of the region is not much larger than that of the generator and that a deep change of parameter exists in the outer side of the region. 展开更多
关键词 RE Numerical Investigation on the Flow and temperature fields in an Inductively coupled Plasma Reactor
下载PDF
Temperature field analysis of main steam pipe under local post weld heat treatment 被引量:4
4
作者 李培麟 樊睿智 陆皓 《China Welding》 EI CAS 2010年第4期20-24,共5页
In local post weld heat treatment, the temperature difference is the criterion of the process. The temperature field in the main stream pipe under local post weld heat treatment is simulated by finite element method. ... In local post weld heat treatment, the temperature difference is the criterion of the process. The temperature field in the main stream pipe under local post weld heat treatment is simulated by finite element method. A close-loop control program is designed to simulate the temperature field of two different pipes. Both the skin effect of induction heating and electro-thermal coupled effect are considered in the heating model. The local heat treatment temperature difference at the inner and outer side of the pipe is analyzed and the different convection conditions are also considered. The simulation results show that in appropriate induction heating process, the temperature difference in the pipe can be controlled within 30 ℃. 展开更多
关键词 local post weld heat treatment temperature field electro-thermal coupling numerical simulation
下载PDF
Temperature field analysis and its application in hot continuous rolling of Inconel 718 superalloy 被引量:2
5
作者 Fengli SUI Liqing CHEN +2 位作者 Xianghua LIU Lintao WANG Wei LI 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2009年第2期81-90,共10页
A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3... A coupled thermo-mechanical model containing metal flow and temperature field for calculating temperature variation has been developed on fourteen-pass hot continuous rolling of round rod for Inconel 718 alloy using 3D elastic-plastic finite element method (FEM). The temperature of characteristic analysis points in the intermediate cross-section of the workpiece has been simulated at initial temperature ranging from 960 to 1000 ℃ and initial velocity in range of 0.15-0.55 m·s^-1. Based on finite element analysis and microstructural observation in cylindrical hot compression experiments, the appropriate hot continuous rolling technologies have been designed for rod products with different diameters. For a real rolling practice, the simulated surface temperature was examined and is in good agreement with the measured one. 展开更多
关键词 Hot continuous rolling Elastic-plastic finite element method(FEM) coupled analysis temperature field Inconel 718
下载PDF
SIMULATION OF TEMPERATURE FIELD IN ULTRA-HIGH FREQUENCY INDUCTION HEATING AND VERIFICATION 被引量:2
6
作者 李奇林 徐九华 苏宏华 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第2期155-161,共7页
An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of... An experimental and numerical study on the temperature field induced in the ultra-high frequency induction heating is carried out.With an aim of predicting the thermal history of the workpiece,the influence factors of temperature field,such as the induction frequency,the dimension of coil and the gap between coil and workpiece,are investigated considering temperature-dependent material properties by using FLUX 2Dsoftware.The temperature field characteristic in ultra-high induction heating is obtained and discussed.The numerical values are compared with the experimental results.A good agreement between them is observed with 7.9% errors. 展开更多
关键词 ultra-high frequency induction heating temperature field flux 2Dsoftware
下载PDF
Modelling of the plasma-MIG welding temperature field 被引量:2
7
作者 白岩 高洪明 +1 位作者 吴林 石磊 《China Welding》 EI CAS 2006年第4期5-8,共4页
A three-dimensional simulation model for the plasma-MIG welding process, which takes the interaction between the plasma arc and MIG arc into account, is presented and the quasi-steady temperature fields on the workpie... A three-dimensional simulation model for the plasma-MIG welding process, which takes the interaction between the plasma arc and MIG arc into account, is presented and the quasi-steady temperature fields on the workpiece are calculated with the model. The 10 mm-5A06 aluminum alloy is welded and the temperature fields are measured with the thermoelectric couple. The simulation results and measured results show that the biggest deviation of peak temperature between them is below 20 ℃, which indicates good coincidence between the simulation and measurement. 展开更多
关键词 heat source model plasma-MIG welding temperature field thermoelectric couple
下载PDF
Numerical analysis for permafrost temperature field in the short term of permafrost subgrade filling
8
作者 Yunjia Wang Qianli Zhang 《Railway Sciences》 2023年第2期179-196,共18页
Purpose-It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of railway.Design/methodology/approach-T... Purpose-It is of great significance to study the influence of subgrade filling on permafrost temperature field in permafrost area for the smooth construction and safe operation of railway.Design/methodology/approach-The paper builds up the model for the hydrothermal coupling calculation of permafrost using finite element software COMSOL to study how permafrost temperature field changes in the short term after subgrade filling,on which basis it proposes the method of calculation for the concave distortion of freezing front in the subgrade-covered area.Findings-The results show that the freezing front below the subgrade center sinks due to the thermal effect of subgrade filling,which will trigger hydrothermal erosion in case of sufficient moisture inflows,leading to the thawing settlement or the cracking of the subgrade,etc.The heat output of soil will be hindered the most in case of July filling,in which case the sinking and the distortion of the freezing front is found to be the most severe,which the recovery of the permafrost temperature field,the slowest,constituting the most unfavorable working condition.The concave distortion of the freezing front in the subgrade area increases with the increase in temperature difference between the filler and ground surface,the subgrade height,the subgrade width and the volumetric thermal capacity of filler,while decreases with the increase of the thermal conductivity of filler.Therefore,the filler chose for engineering project shall be of small volumetric thermal capacity,low initial temperature and high thermal conductivity whenever possible.Originality/value-The concave distortion of the freezing front under different working conditions at different times after filling can be calculated using the method proposed. 展开更多
关键词 SUBGRADE PERMAFROST temperature field Hydrothermal coupling Numerical simulation
下载PDF
Vibration-Induced Friction Temperature Field Analysis Under Different Working Condition of Heavy Load Bolt
9
作者 LIANG Feng-rui,SU Hang,YANG Cai-fu (Institute for Structural Materials,Central Iron and Steel Research Institute,Beijing 100081,China) 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第S1期641-645,共5页
Based on thermal-stress coupling analysis and material properties studies,the vibration-induced friction process of a special used heavy-load bolt has been simulated.The temperature distribution of the bolt has been c... Based on thermal-stress coupling analysis and material properties studies,the vibration-induced friction process of a special used heavy-load bolt has been simulated.The temperature distribution of the bolt has been calculate with heat radiation and heat convection considered.Also a solid lubricant,polytetrafluoroethylene (PTFE) has bee considered to reduce the friction heat effect.The result shows that,there are very strong heat effect while no lubracant considered,the temperature of the bolt joint increased sharply and up to 700℃,which exceed the allowable temperature range of the steel.When PTFE lubricant has been applied,the temperature of the bolt joint increased to 260 ℃,and the bolt steel can by applied in this satuation.These results provide important guidance for the bolt structure modification and material selection. 展开更多
关键词 friction heat temperature field materials phase transition solid lubrication thermal-stress coupling analysis
原文传递
Numerical simulation of temperature distribution of deep field in temperature mine
10
作者 张树光 唐丽娟 徐义洪 《Journal of Coal Science & Engineering(China)》 2008年第2期272-275,共4页
In order to study the temperature distribution of deep field,mathematical mod- els of temperature field in field and surrounding rock were built based on heat transfer and seepage theory.Combined test data with mathem... In order to study the temperature distribution of deep field,mathematical mod- els of temperature field in field and surrounding rock were built based on heat transfer and seepage theory.Combined test data with mathematical model,the temperature distribution under heat-transfer and underground-water coupling was studied by using Golden Soft- ware Surfer and Matlab.The results show that distribution law of most isothermal lines is very similar in deep field,and temperature gradient is equal in general.At the same time, temperature distribution is influenced by underground-water and fault.In surrounding rock, seepage changes symmetrical distribution of temperature field and vector,and the tem- perature field may divide into inward-diffusion area and outward-diffusion area.Peripheral temperature of working will approach to the temperature of airflow.In inward diffusion area the distribution of temperature and temperature vector is symmetric,and the direction of temperature vector point to the center of working.The action of airflow is stronger than seepage in inward diffusion area,however,the case opposite is true in outward diffusion area. 展开更多
关键词 numerical simulation temperature field SEEPAGE coupling heat transfer
下载PDF
Transient multi-physics behavior of an insert high temperature superconducting no-insulation coil in hybrid superconducting magnets with inductive coupling 被引量:1
11
作者 Xiang KANG Yujin TONG +1 位作者 Wei WU Xingzhe WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第2期255-272,共18页
A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet dur... A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications. 展开更多
关键词 hybrid superconducting magnet high temperature superconducting(HTS)no-insulation(NI)coil inductive coupling multi-physics field thermal stability
下载PDF
Evaluation of a gate-first process for AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors with low ohmic annealing temperature 被引量:1
12
作者 李柳暗 张家琦 +1 位作者 刘扬 敖金平 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期445-447,共3页
In this paper, TiN/A1Ox gated A1GaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS- HFETs) were fabricated for gate-first process evaluation. By employing a low temperature ohmic process... In this paper, TiN/A1Ox gated A1GaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors (MOS- HFETs) were fabricated for gate-first process evaluation. By employing a low temperature ohmic process, ohmic contact can be obtained by annealing at 600 ℃ with the contact resistance approximately 1.6 Ω.mm. The ohmic annealing process also acts as a post-deposition annealing on the oxide film, resulting in good device performance. Those results demonstrated that the TiN/A1Ox gated MOS-HFETs with low temperature ohmic process can be applied for self-aligned gate AIGaN/GaN MOS-HFETs. 展开更多
关键词 metal-oxide-semiconductor heterostructure field-effect transistors low temperature ohmic pro-cess inductively coupled plasma
下载PDF
A coupled model of temperature and pressure based on hydration kinetics during well cementing in deep water
13
作者 WANG Xuerui SUN Baojiang +5 位作者 LIU Shujie LI Zhong LIU Zhengli WANG Zhiyuan LI Hao GAO Yonghai 《Petroleum Exploration and Development》 2020年第4期867-876,共10页
Considering the complicated interactions between temperature,pressure and hydration reaction of cement,a coupled model of temperature and pressure based on hydration kinetics during deep-water well cementing was estab... Considering the complicated interactions between temperature,pressure and hydration reaction of cement,a coupled model of temperature and pressure based on hydration kinetics during deep-water well cementing was established.The differential method was used to do the coupled numerical calculation,and the calculation results were compared with experimental and field data to verify the accuracy of the model.When the interactions between temperature,pressure and hydration reaction are considered,the calculation accuracy of the model proposed is within 5.6%,which can meet the engineering requirements.A series of numerical simulation was conducted to find out the variation pattern of temperature,pressure and hydration degree during the cement curing.The research results show that cement temperature increases dramatically as a result of the heat of cement hydration.With the development of cement gel strength,the pore pressure of cement slurry decreases gradually to even lower than the formation pressure,causing gas channeling;the transient temperature and pressure have an impact on the rate of cement hydration reaction,so cement slurry in the deeper part of wellbore has a higher rate of hydration rate as a result of the high temperature and pressure.For well cementing in deep water regions,the low temperature around seabed would slow the rate of cement hydration and thus prolong the cementing cycle. 展开更多
关键词 deep-water drilling well cementing hydration reaction kinetics temperature field pressure field coupled prediction model
下载PDF
Effect of Traverse/Rotational Speed on Material Deformations and Temperature Distributions in Friction Stir Welding 被引量:2
14
作者 Zhao ZHANG Jun BIE Yali LIU Hongwu ZHANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第6期907-914,共8页
A fully coupled thermo-mechanical model was developed to study the temperature fields and the plastic deformations of alloy AL6061-T6 under different process parameters during the friction stir welding (FSW) process... A fully coupled thermo-mechanical model was developed to study the temperature fields and the plastic deformations of alloy AL6061-T6 under different process parameters during the friction stir welding (FSW) process. Three-dimensional results under different process parameters were presented. Results indicate that the maximum temperature is lower than the melting point of the welding material. The higher temperature gradient occurs in the leading side of the workpiece. The calculated temperature field can be fitted well with the one from the experimental test. A lower plastic strain region can be found near the welding tool in the trailing side on the bottom surface, which is formed by the specific material flow patterns in FSW. The maximum temperature can be increased with increasing the welding speed and the angular velocity in the current numerical modelling. 展开更多
关键词 Fully coupled thermo-mechanical model Friction stir welding temperature field Plastic strain
下载PDF
RESEARCH ON INFLUENCE OF TEMPERATURE ON A PRECISION FORGING PROCESS OF BLADE WITH A TENON
15
作者 Y.L. Liu H. Yang T. Gao M. Zhan W. Cai 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第6期749-755,共7页
The blade precision forging process is a forming process with high temperature and large plastic deformation. Interaction of deformation and heat conduction leads to large uneven distribution of temperature. The uneve... The blade precision forging process is a forming process with high temperature and large plastic deformation. Interaction of deformation and heat conduction leads to large uneven distribution of temperature. The unevenness of temperature distribution has a great effect on mechanical properties and the microstracture of materials. So it is necessary to consider the influence of temperature on the precision forging process of blades. Taking a blade with a tenon into consideration, a 3D mechanical model in precision forging is built up. The distribution laws of temperature field and the influence of the temperature on the equivalem stress in the process are obtained by using 3-D coupled thermo-mechanical FEM code developed by the authors Theresuits obtained illustrate that the influence of the temperature field on the blade forging process is considerable. The achievements of predicting microstructure and mechanical properties for forged blades is significant. 展开更多
关键词 blade with a tenon precision forging equivalent stress field temperature field thermo-mechanical coupled 3D FEM simulation
下载PDF
Formation Mechanism in Alloy Steel Rolling Process Using Thermo-mechanical Coupling Method
16
作者 杨理诚 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第3期422-426,共5页
Based on the theory of elastic-plastic finite element method, the high-speed hot continuous rolling process of a billet is simulated and analyzed in vertical and horizontal passes. The billet is dragged into the passe... Based on the theory of elastic-plastic finite element method, the high-speed hot continuous rolling process of a billet is simulated and analyzed in vertical and horizontal passes. The billet is dragged into the passes by contact friction force between the billet and rollers. The rollers and billet are represented by respectively rigid and deformable bodies, and three-dimensional models are developed for the billet and rollers. The distribution of deformation field, effective strain, rolling force and temperature field are accurately calculated for the whole rolling process (including unstable and stable stages). In addition, the rolling pressure on the width symmetry center is compared with that in the in-situ experimental measurements. It is revealed that various heat exchange phenomena among the billet, rollers and surroundings can result in unbalanced temperature distribution on the cross section. Rolling force and strain can change significantly when the billet is moved towards or away from the roller gap, and keep almost invariable in the stable stage. It is expected that the simulation results would be useful for practical manufacture and provide the theoretical foundation for improvement of process planning and optimization of process parameters. 展开更多
关键词 thermo-mechanical coupling temperature field deformation mechanism hot rolling process
下载PDF
Numerical Simulation of Temperature Distribution and ThermalStress Field in a Turbine Blade with Multilayer-Structure TBCs by a Fluid–Solid Coupling Method 被引量:16
17
作者 W.Z.Tang L.Yang +3 位作者 W.Zhu Y.C.Zhou J.W.Guo C.LU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第5期452-458,共7页
To study the temperature distribution and thermal-stress field in different service stages, a two-dimensional model of a turbine blade with thermal barrier coatings is developed, in which the conjugate heat transfer a... To study the temperature distribution and thermal-stress field in different service stages, a two-dimensional model of a turbine blade with thermal barrier coatings is developed, in which the conjugate heat transfer analysis and the decoupled thermal-stress calculation method are adopted. Based on the simulation results, it is found that a non-uniform distribution of temperature appears in different positions of the blade surface, which has directly impacted on stress field. The maximum temperature with a value of 1030 ℃ occurs at the leading edge. During the steady stage, the maximum stress of thermally grown oxide (TGO) appears in the middle of the suction side, reaching 3.75 GPa. At the end stage of cooling, the maximum compressive stress of TGO with a value of-3.5 GPa occurs at the leading edge. Thus, it can be predicted that during the steady stage the dangerous regions may locate at the suction side, while the leadine edge mav be more Drone to failure on cooling. 展开更多
关键词 Thermal barrier coatings temperature distribution Thermal-stress field Conjugate heat transfer Decoupled thermal-stress calculation Fluid–solid coupling
原文传递
Development and validation of THM coupling model of methane-containing coal 被引量:3
18
作者 Tao Yunqi Xu Jiang +1 位作者 Liu Dong Liang Yongqing 《International Journal of Mining Science and Technology》 SCIE EI 2012年第6期868-872,共5页
Based on nine necessary basic assumptions for THM coupling model,this research comprehensively applied the theories of elastic mechanics,seepage mechanics and heat transfer,and established a real three-field and two-w... Based on nine necessary basic assumptions for THM coupling model,this research comprehensively applied the theories of elastic mechanics,seepage mechanics and heat transfer,and established a real three-field and two-way coupled mathematical model to reveal the connections among seepage field,deformation field and temperature field within the system of methane-containing coal.In comparison between numerical and analytical solutions,the coupling modeling for THM of methane-containing coal was proved to be correct by model application in the physical simulation experiment of coal and gas outburst.The model established in this paper was the improvement of traditional seepage theory of methane-containing coal and fluid-solid coupled model theory,which can be widely used in prevention of coal and gas outburst as well as exploitation of coal bed methane. 展开更多
关键词 COAL containing METHANE temperature field SEEPAGE field Stress field Fluid-solid-heat coupling
下载PDF
Development and application of coupling model of aluminum thin-gauge high-speed casting 被引量:1
19
作者 刘晓波 毛大恒 钟掘 《中国有色金属学会会刊:英文版》 CSCD 2005年第3期485-490,共6页
Based on the analyses of aluminum melt flow, solidification, heat transfer during the process of twin-roll casting, a coupling mathematical model of aluminum thin-gauge high-speed casting was developed, which included... Based on the analyses of aluminum melt flow, solidification, heat transfer during the process of twin-roll casting, a coupling mathematical model of aluminum thin-gauge high-speed casting was developed, which included the casting roller shell. At the same time, Galerkin method was adopted to solve the coupling model. The fluid field and temperature field of aluminum melt in casting zone, the temperature field and thermal stress field of roller shells were simulated by the coupling model. When the casting velocity is 7m/min, and the thickness of strip is 2mm, the circumfluent area comes into being in the casting zone, and the mushy zone dominates the casting zone, while the temperature of melt decreases rapidly as it approaches the rollers. The temperature of the roller shell varies periodically with the rotation of roller, and reaches the highest temperature in the casting zone, while the temperature of roller shell decreases gradually as it leaves the casting zone. The difference of thermal stress between the inner surface and outer surface of the roller shell is very large, and the outer surface suffers tensile-compressive stress. 展开更多
关键词 高速铸造 铝合金 温度场 压力场 耦合模型
下载PDF
A Numerical Model Coupling Electromagnetism and Thermomechanics Application to Induction Heating Modeling
20
作者 Fran cois Bay, Valerie Labbe Yann Favennec Centre de Mise en Forme des Materiaux, Ecole des Mines de Paris B.P 207 - 06904 Sophia Antipolis cedex - FRANCE 《Journal of Shanghai Jiaotong university(Science)》 EI 2000年第1期63-71,共9页
A numerical model coupling the various physical phenomena (electromagnetic, thermal and mechanical) taking place in the induction heating process has been developed. The mathematical model and the numerical methods ar... A numerical model coupling the various physical phenomena (electromagnetic, thermal and mechanical) taking place in the induction heating process has been developed. The mathematical model and the numerical methods are presented here, along with some results ( electric, thermal and mechanical fields in the workpiece) 展开更多
关键词 INDUCTION HEATING Electromagnetic field temperature field Stress field MULTIPHYSICS coupling
下载PDF
上一页 1 2 70 下一页 到第
使用帮助 返回顶部