In order to reduce the errors of the reliability of the retaining wall structure in the establishment of function, in the estimation of parameter and algorithm, firstly, two new reliability and stability models of ant...In order to reduce the errors of the reliability of the retaining wall structure in the establishment of function, in the estimation of parameter and algorithm, firstly, two new reliability and stability models of anti-slipping and anti-overturning based on the upper-bound theory of limit analysis were established, and two kinds of failure modes were regarded as a series of systems with multiple correlated failure modes. Then, statistical characteristics of parameters of the retaining wall structure were inferred by maximal entropy principle. At last, the structural reliabilities of single failure mode and multiple failure modes were calculated by Monte Carlo method in MATLAB and the results were compared and analyzed on the sensitivity. It indicates that this method, with a high precision, is not only easy to program and quick in calculation, but also without the limit of nonlinear functions and non-normal random variables. And the results calculated by this method which applies both the limit analysis theory, maximal entropy principle and Monte Carlo method into analyzing the reliability of the retaining wall structures is more scientific, accurate and reliable, in comparison with those calculated by traditional method.展开更多
BACKGROUND Craniocerebral injuries encompass brain injuries,skull fractures,cranial soft tissue injuries,and similar injuries.Recently,the incidence of craniocerebral injuries has increased dramatically due to the inc...BACKGROUND Craniocerebral injuries encompass brain injuries,skull fractures,cranial soft tissue injuries,and similar injuries.Recently,the incidence of craniocerebral injuries has increased dramatically due to the increased numbers of traffic accidents and aerial work injuries,threatening the physical and mental health of patients.AIM To investigate the impact of failure modes and effects analysis(FMEA)-based emergency management on craniocerebral injury treatment effectiveness.METHODS Eighty-four patients with craniocerebral injuries,treated at our hospital from November 2019 to March 2021,were selected and assigned,using the random number table method,to study(n=42)and control(n=42)groups.Patients in the control group received conventional management while those in the study group received FMEA theory-based emergency management,based on the control group.Pre-and post-interventions,details regarding the emergency situation;levels of inflammatory stress indicators[Interleukin-6(IL-6),C-reactive protein(CRP),and procalcitonin(PCT)];incidence of complications;prognoses;and satisfaction regarding patient care were evaluated for both groups.RESULTS For the study group,the assessed parameters[pre-hospital emergency response time(9.13±2.37 min),time to receive a consultation(2.39±0.44 min),time needed to report imaging findings(1.15±4.44 min),and test reporting time(32.19±6.23 min)]were shorter than those for the control group(12.78±4.06 min,3.58±0.71 min,33.49±5.51 min,50.41±11.45 min,respectively;P<0.05).Pre-intervention serum levels of IL-6(78.71±27.59 pg/mL),CRP(19.80±6.77 mg/L),and PCT(3.66±1.82 ng/mL)in the study group patients were not significantly different from those in the control group patients(81.31±32.11 pg/mL,21.29±8.02 mg/L,and 3.95±2.11 ng/mL respectively;P>0.05);post-intervention serum indicator levels were lower in both groups than pre-intervention levels.Further,serum levels of IL-6(17.35±5.33 pg/mL),CRP(2.27±0.56 mg/L),and PCT(0.22±0.07 ng/mL)were lower in the study group than in the control group(30.15±12.38 pg/mL,3.13±0.77 mg/L,0.38±0.12 ng/mL,respectively;P<0.05).The complication rate observed in the study group(9.52%)was lower than that in the control group(26.19%,P<0.05).The prognoses for the study group patients were better than those for the control patients(P<0.05).Patient care satisfaction was higher in the study group(95.24%)than in the control group(78.57%,P<0.05).CONCLUSION FMEA-based craniocerebral injury management effectively shortens the time spent on emergency care,reduces inflammatory stress and complication risk levels,and helps improve patient prognoses,while achieving high patient care satisfaction levels.展开更多
Reliability allocation of computerized numerical controlled(CNC)lathes is very important in industry.Traditional allocation methods only focus on high-failure rate components rather than moderate failure rate compon...Reliability allocation of computerized numerical controlled(CNC)lathes is very important in industry.Traditional allocation methods only focus on high-failure rate components rather than moderate failure rate components,which is not applicable in some conditions.Aiming at solving the problem of CNC lathes reliability allocating,a comprehensive reliability allocation method based on cubic transformed functions of failure modes and effects analysis(FMEA)is presented.Firstly,conventional reliability allocation methods are introduced.Then the limitations of direct combination of comprehensive allocation method with the exponential transformed FMEA method are investigated.Subsequently,a cubic transformed function is established in order to overcome these limitations.Properties of the new transformed functions are discussed by considering the failure severity and the failure occurrence.Designers can choose appropriate transform amplitudes according to their requirements.Finally,a CNC lathe and a spindle system are used as an example to verify the new allocation method.Seven criteria are considered to compare the results of the new method with traditional methods.The allocation results indicate that the new method is more flexible than traditional methods.By employing the new cubic transformed function,the method covers a wider range of problems in CNC reliability allocation without losing the advantages of traditional methods.展开更多
The recognition and management of risk in donation process and blood product is critical to ensure donor and patient safety. To achieve this goal, the failure mode and effects analysis (FMEA) is a convenient method;mo...The recognition and management of risk in donation process and blood product is critical to ensure donor and patient safety. To achieve this goal, the failure mode and effects analysis (FMEA) is a convenient method;moreover it was used to prevent the occurrence of adverse events and look at what could go strong at each step. This study aimed to utilize FMEA in central blood bank in Khartoum to evaluate the potential risk and adverse event that may occur during the donation process. According to the severity, occurrence and the detection of each failure mode, the risk priority number (RPN) was calculated to determine which of the failures should take priority to find a solution and applying corrective action to reduce the failure risk. The statistical package for social sciences (SPSS) version 11 was used as descriptive and analytical statistics tool. The FMEA technique provides a systematic method for finding vulnerabilities in a process before they result in an error, and in this study a satisfactory outcome was reached.展开更多
It is not objective to rate the decision-making factors in the traditional failure mode and effect analysis,so fuzzy semantic theory is used in this paper.Six fuzzy semantic scales and their corresponding semantics ar...It is not objective to rate the decision-making factors in the traditional failure mode and effect analysis,so fuzzy semantic theory is used in this paper.Six fuzzy semantic scales and their corresponding semantics are summarized,and a defuzzification method is studied to obtain the fuzzy value table of the six fuzzy semantic scales.For the conflicts between experts in the traditional failure mode and effects analysis,a conflict-resolution algorithm is studied to obtain the failure risk order.Finally,a certain type of industrial valve is used as an example to prove the validity of the theory proposed in this paper.展开更多
In view of the low level testability of armored equipment,the important significance of armored equipment testability growth is discussed in this paper.The failure mode effects and criticality analysis( FMECA) method ...In view of the low level testability of armored equipment,the important significance of armored equipment testability growth is discussed in this paper.The failure mode effects and criticality analysis( FMECA) method to realize testability growth is introduced.Centering on the testability growth demands of new armored equipment,the deficiencies of traditional FMECA are analyzed.And an enhanced FMECA( EFMECA) method is proposed.The method increases the analysis contents,combines the information before the failure occurrence and impending failure modes together organically.Then the failure symptoms is analyzed,the failure modes and effects is determined,and the state development trend is predicted.Finally,the application of EFMECA method is illustrated by the example of the failure mode of typical armored equipment engine.展开更多
[Objectives]To investigate the effect of healthcare failure mode and effect analysis(HFMEA)on reducing error risk of neonatal parenteral nutrition solution dispensing.[Methods]A research team was established to identi...[Objectives]To investigate the effect of healthcare failure mode and effect analysis(HFMEA)on reducing error risk of neonatal parenteral nutrition solution dispensing.[Methods]A research team was established to identify the failure mode(FM)in each link of the formulation process of neonatal parenteral nutrition solution by HFMEA,quantify the severity(S),occurrence(O)and detection(D)of FM,and evaluate FM by risk priority number(RPN).For FM with the values of RPN>16,failure cause analysis was conducted,and corresponding improvement measures were formulated.The weight coefficient and random consistency ratio(CR)of deployment process were calculated in Matlab R2018a by compiling the Analytic Hierarchy Process(AHP)program.Six months after the implementation of improvement measures,the implementation effect was evaluated by comparing the changes of the values of RPN which was evaluated comprehensively and the rate of dispensing errors before and after the implementation of HFMEA.[Results]In the preparation process of neonatal parenteral nutrition solution,a total of 13 FMs with medium and above risk were found,the weight coefficient of medical order review,dosing and mixing was 0.2703,the weight coefficient of drug dispensing check and review was 0.1432,the weight coefficient of print label was 0.1015,the weight coefficient of distribution was 0.0716,and CR=0.0491<0.1.After six months of intervention,the total RPN value decreased by 64.81%from 127.8 to 45.0.The deployment error rates were significantly lower after the implementation,and the difference was statistically significant(P<0.05).[Conclusions]HFMEA can effectively reduce the error risk in preparation of neonatal parenteral nutrition solution,improve the quality of dispensing and promote the safety of neonatal medication.展开更多
Failure mode and effects analysis (FMEA) offers a quick and easy way for identifying ranking-order for all failure modes in a system or a product. In FMEA the ranking methods is so called risk priority number (RPN...Failure mode and effects analysis (FMEA) offers a quick and easy way for identifying ranking-order for all failure modes in a system or a product. In FMEA the ranking methods is so called risk priority number (RPN), which is a mathematical product of severity (S), occurrence (0), and detection (D). One of major disadvantages of this ranking-order is that the failure mode with different combination of SODs may generate same RPN resulting in difficult decision-making. Another shortfall of FMEA is lacking of discerning contribution factors, which lead to insufficient information about scaling of improving effort. Through data envelopment analysis (DEA) technique and its extension, the proposed approach evolves the current rankings for failure modes by exclusively investigating SOD in lieu of RPN and to furnish with improving sca.les for SOD. The purpose of present study is to propose a state-of-the-art new approach to enhance assessment capabilities of failure mode and effects analysis (FMEA). The paper proposes a state-of-the-art new approach, robust, structured and useful in practice, for failure analysis.展开更多
The failure modes and effects analysis (FMEA) is widely applied in manufacturing industries in various phases of the product life cycle to evaluate the system, its design and processes for failures that can occur. T...The failure modes and effects analysis (FMEA) is widely applied in manufacturing industries in various phases of the product life cycle to evaluate the system, its design and processes for failures that can occur. The FMEA team often demonstrates different opinions and these different types of opinions are very difficult to incorporate into the FMEA by the traditional risk priority number model. In this paper, for each of the Occurrence, Severity and Detectivity parameters a fuzzy set is defined and the opinion of each FMEA team members is considered. These opinions are considered simultaneously with weights that are given to each individual based on their skills and experience levels. In addition, the opinion of the costumer is considered for each of the FMEA parameters. Then, the Risk Priority Numbers (RPN) is calculated using a Multi Input Single Output (MISO) fuzzy expert system. The proposed model is applied for prioritizing the failures of Peugeot 206 Engine assembly line in IKCo (Iran Khodro Company).展开更多
In this paper, a numerical method for correlation sensitivity analysis of a nonlinear random vibration system is presented. Based on the first passage failure model, the probability perturbation method is employed to ...In this paper, a numerical method for correlation sensitivity analysis of a nonlinear random vibration system is presented. Based on the first passage failure model, the probability perturbation method is employed to determine the statistical characteristics of failure modes and the correlation between them. The sensitivity of correlation between failure modes with respect to random parameters characterizing the uncertainty of the hysteretic loop is discussed. In a numerical example, a two-DOF shear structure with uncertain hysteretic restoring force is considered. The statistical characteristics of response, failure modes and the sensitivity of random hysteretic loop parameters are provided, and also compared with a Monte Carlo simulation.展开更多
A generalized nonlinear Baker failure criterion is employed with the upper bound limit analysis to study the surrounding rock stability of underground cavities. A three-dimensional(3D) failure mode is established by e...A generalized nonlinear Baker failure criterion is employed with the upper bound limit analysis to study the surrounding rock stability of underground cavities. A three-dimensional(3D) failure mode is established by extending the two-dimensional(2D) failure mode, which offers an upper bound expression of the surrounding rock pressure. This method is validated with a series of examples before the influence of four parameters of scale parameter, curvature parameter, shift parameter and lateral pressure coefficient, on the surrounding rock pressure is analyzed. According to these results, failure ranges of the underground cavities are determined. The following conclusions are reached:(1) the proposed approach is more accurate to predict surrounding rock pressure than the Mohr-Coulomb failure criterion;(2) the surrounding rock with large scale parameter, curvature parameter, shift parameter, and lateral pressure coefficient can lead to a more stable underground cavity;(3) the failure range in 3D mode can be predicted according to the upper bound solutions.展开更多
A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the d...A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.展开更多
Ply-by-ply failure analysis of symmetric and anti-symmetric laminates under uniform sinusoidal transverse dynamic loading is performed for a specified duration.The study investigates the first ply failure load,followe...Ply-by-ply failure analysis of symmetric and anti-symmetric laminates under uniform sinusoidal transverse dynamic loading is performed for a specified duration.The study investigates the first ply failure load,followed by the detection of successive ply failures and their failure modes using various failure theories.Some of the well-established failure theories,mostly used by the researchers,are considered for the failure prediction in laminates.The finite element computational model based on higher order shear deformation displacement field is used for the failure analysis and the complete methodology is computer coded using FORTRAN.The ply-discount stiffness reduction scheme is employed to modify the material properties of the failed lamina.The failure theories used in the analysis are compared according to their ability to predict failure load,failed ply,failure mode and progression of failure.The failure analysis is performed for both the cross-ply and angle-ply laminates with all edges simply supported and clamped.The significance of fibre orientation and stacking sequence in terms of the strength of a laminate and failure progression is also highlighted.展开更多
Unsupervised and supervised pattern recognition( PR)techniques are used to classify the acoustic emission( AE) data originating from the quasi-isotropic self-reinforced polyethylene composites,in order to identify the...Unsupervised and supervised pattern recognition( PR)techniques are used to classify the acoustic emission( AE) data originating from the quasi-isotropic self-reinforced polyethylene composites,in order to identify the various mechanisms in the multiangle-ply thermoplastic composites. Ultra-high molecular weight polyethylene / low density polyethylene( UHMWPE / LDPE)composites were made and tested under quasi-static tensile load. The failure process was monitored by the AE technique. The collected AE signals were classified by unsupervised and supervised PR techniques, respectively. AE signals were clustered with unsupervised PR scheme automatically and mathematically. While in the supervised PR scheme,the labeled AE data from simple lay-up UHMWPE / LDPE laminates were utilized as the reference data.Comparison was drawn according to the analytical results. Fracture surfaces of the UHMWPE / LDPE specimens were observed by a scanning electron microscope( SEM) for some physical support. By combining both classification results with the observation results,correlations were established between the AE signal classes and their originating damage modes. The comparison between the two classifying schemes showed a good agreement in the main damage modes and their failure process. It indicates both PR techniques are powerful for the complicated thermoplastic composites. Supervised PR scheme can lead to a more precise classification in that a suitable reference data set is input.展开更多
In the engineering.to ensure the quality and safety,it is necessary to carry out reliability analysis on it.When conducting reliability analysis in engineering.a 1arge rumber of small1 failure probability problems wil...In the engineering.to ensure the quality and safety,it is necessary to carry out reliability analysis on it.When conducting reliability analysis in engineering.a 1arge rumber of small1 failure probability problems will be encountered.For such problems,the traditional Monte Carlo method needs a 1ot of samples,and the calculation efficiency is extremely 1ow,while the subset sinmulation method can efficiently estimate the relLability index of the small failure probability problem with litle samples.Therefore,this paper takes the application of the subset simulation method in the reliability analysis of the small failure probability structure as the object,constructs the reliability analysis method of the single failure mode of the system and applies the method to a mathematical example and a single-story gate.Through the rigid frame example,it can be seen that this method is beneficial to improve the calculation efficiency and accuracy.展开更多
BACKGROUND Utilizing failure mode and effects analysis(FMEA)in operating room nursing provides valuable insights for the care of patients undergoing radical gastric cancer surgery.AIM To evaluate the impact of FMEA on...BACKGROUND Utilizing failure mode and effects analysis(FMEA)in operating room nursing provides valuable insights for the care of patients undergoing radical gastric cancer surgery.AIM To evaluate the impact of FMEA on the risk of adverse events and nursing-care quality in patients undergoing radical surgery.METHODS Among 230 patients receiving radical cancer surgery between May 2019 and May 2024,115 were assigned to a control group that received standard intraoperative thermoregulation,while the observation group benefited from FMEA-modeled operating room care.Clinical indicators,stress responses,postoperative gastroin-testinal function recovery,nursing quality,and the incidence of adverse events were compared between the two groups.RESULTS Significant differences were observed in bed and hospital stay durations between the groups(P<0.05).There were no significant differences in intraoperative blood loss or postoperative body temperature(P>0.05).Stress scores improved in both groups post-nursing(P<0.05),with the observation group showing lower stress scores than the control group(P<0.05).Gastrointestinal function recovery and nursing quality scores also differed significantly(P<0.05).Additionally,the incidence of adverse events such as stress injuries and surgical infections varied notably between the groups(P<0.05).CONCLUSION Incorporating FMEA into operating room nursing significantly enhances patient care by improving safety,expediting recovery,and reducing healthcare-associated risks.展开更多
In order to apply the performance-based seismic design, an engineer must first find out whether the column is expected to fail in shear before or after flexural yielding. According to column failure characteristics an...In order to apply the performance-based seismic design, an engineer must first find out whether the column is expected to fail in shear before or after flexural yielding. According to column failure characteristics and failure mode of reinforced concrete column, the UW-PEER structure performance database was discussed and analyzed. In order to investigate the relevance of failure mode and factors such as longitudinal reinforcement ratio, transverse reinforcement ratio, hoop spacing to depth ratio, aspect ratio, shearing resistance demand to shear capacity ratio and axial load ratio, Fisher's discriminant analysis(FDA) of the above factors was carried out. A discriminant function was developed to identify column failure mode. Results show that three factors, i.e., Vp /Vn, hoop spacing to depth ratio and aspect ratio have important influence on the failure mode. The failure mode has less to do with longitudinal reinforcement ratio, transverse reinforcement ratio and axial load ratio. Through using these three factors and the model proposed, over 85.6% of the original grouped cases were correctly classified. The value of coefficient of Vp /Vn is the largest, which means that discriminant equation is most sensitive to the shearing resistance demand to shear capacity ratio.展开更多
A stratified rock mass model was founded by FLAC^3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visu...A stratified rock mass model was founded by FLAC^3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visually reflect the failure modes of rock samples under different inclination angles β of structural plane. The stiffness of rock sample before peak strength changes in the compressive procedure. With the increase of β, the compressive strength σc of rock sample decreases firstly and then increases; when β is in the range of 20°-30° and 80°-90°, σc has the largest sensitivity to r; while β falls in the range of 30°-70°, σc varies little. When φj〈β〈90° ( φj is friction angle of structure plane), the results obtained from numerical simulation and theoretical analysis are in almost the same values; while β〈 φj or β=90°, they are in great different values. The results obtained from theoretical analysis are obvious larger than those from numerical simulation; and the results from numerical simulation can reflect the difference of compressive strength of rock samples for the two situations of β≥φj and β=90°, which is in more accordance with the real situation.展开更多
Shear failure in panel zones and plastic hinges in steel beams are the two major failure modes of connections between concrete-filled steel tubular(CFST) columns and steel beams. To investigate the behavior of this ty...Shear failure in panel zones and plastic hinges in steel beams are the two major failure modes of connections between concrete-filled steel tubular(CFST) columns and steel beams. To investigate the behavior of this type of connection in both modes,two through-diaphragm connections were tested under cyclic and monotonic loadings and the load-carrying capacity,ductility,and strength of degradation of connections were discussed. Using ABAQUS software,we developed nonlinear finite-element models(FEMs) to simulate the load-carrying capacity and failure modes of the connections under monotonic loading. The finite-element(FE) analysis and test results showed reasonable agreement for the through-diaphragm connections,which confirms the accuracy of FEMs in predicting the load-carrying capacity and failure modes of connections. Based on the validated FEM,a parametric study was then conducted to investigate the infl uence of the thicknesses of the tube and diaphragm on the load-carrying capacity and failure modes of these connections. The results indicate that the strength,stiff ness,and load-carrying capacity are infl uenced less by the thickness of the diaphragm,and more by the thickness of the steel tube. According to the FE analysis results,it can be found that the critical condition between the two failure modes is determined by the shear resistance and bending resistance.展开更多
To understand the relationship between the collapse mechanisms and geometry parameters of sandwich plate with two aluminum alloy faces and one polyurethane foam core, samples subjected to three-point bending loads wer...To understand the relationship between the collapse mechanisms and geometry parameters of sandwich plate with two aluminum alloy faces and one polyurethane foam core, samples subjected to three-point bending loads were studied through simulation, test and analytic methods. Based on published papers, the dimensionless values of limit loads for different failure modes were modified according to real test condition. The load-deformation relation from the analytical formulae was compared with that from experimental and numerical results. A mechanism map was provided to reveal the dependence of the dominant collapse mechanism upon the geometry parameters of the face and the core. The results show that the prediction accuracy was high only if the face thickness was much smaller than the core thickness.展开更多
基金Project(2013CB036004) supported by the National Basic Research Program of ChinaProjects(51178468,51174086) supported by the National Natural Science Foundation of ChinaProject(201102) supported by the Open Foundation of Hunan Key Laboratory of Safe Mining Techniques of Coal Mines,China
文摘In order to reduce the errors of the reliability of the retaining wall structure in the establishment of function, in the estimation of parameter and algorithm, firstly, two new reliability and stability models of anti-slipping and anti-overturning based on the upper-bound theory of limit analysis were established, and two kinds of failure modes were regarded as a series of systems with multiple correlated failure modes. Then, statistical characteristics of parameters of the retaining wall structure were inferred by maximal entropy principle. At last, the structural reliabilities of single failure mode and multiple failure modes were calculated by Monte Carlo method in MATLAB and the results were compared and analyzed on the sensitivity. It indicates that this method, with a high precision, is not only easy to program and quick in calculation, but also without the limit of nonlinear functions and non-normal random variables. And the results calculated by this method which applies both the limit analysis theory, maximal entropy principle and Monte Carlo method into analyzing the reliability of the retaining wall structures is more scientific, accurate and reliable, in comparison with those calculated by traditional method.
基金Supported by Basic Research on Medical and Health Application of the People's Livelihood Science and Technology Project of Suzhou Science and Technology Bureau,No.SYS2020102.
文摘BACKGROUND Craniocerebral injuries encompass brain injuries,skull fractures,cranial soft tissue injuries,and similar injuries.Recently,the incidence of craniocerebral injuries has increased dramatically due to the increased numbers of traffic accidents and aerial work injuries,threatening the physical and mental health of patients.AIM To investigate the impact of failure modes and effects analysis(FMEA)-based emergency management on craniocerebral injury treatment effectiveness.METHODS Eighty-four patients with craniocerebral injuries,treated at our hospital from November 2019 to March 2021,were selected and assigned,using the random number table method,to study(n=42)and control(n=42)groups.Patients in the control group received conventional management while those in the study group received FMEA theory-based emergency management,based on the control group.Pre-and post-interventions,details regarding the emergency situation;levels of inflammatory stress indicators[Interleukin-6(IL-6),C-reactive protein(CRP),and procalcitonin(PCT)];incidence of complications;prognoses;and satisfaction regarding patient care were evaluated for both groups.RESULTS For the study group,the assessed parameters[pre-hospital emergency response time(9.13±2.37 min),time to receive a consultation(2.39±0.44 min),time needed to report imaging findings(1.15±4.44 min),and test reporting time(32.19±6.23 min)]were shorter than those for the control group(12.78±4.06 min,3.58±0.71 min,33.49±5.51 min,50.41±11.45 min,respectively;P<0.05).Pre-intervention serum levels of IL-6(78.71±27.59 pg/mL),CRP(19.80±6.77 mg/L),and PCT(3.66±1.82 ng/mL)in the study group patients were not significantly different from those in the control group patients(81.31±32.11 pg/mL,21.29±8.02 mg/L,and 3.95±2.11 ng/mL respectively;P>0.05);post-intervention serum indicator levels were lower in both groups than pre-intervention levels.Further,serum levels of IL-6(17.35±5.33 pg/mL),CRP(2.27±0.56 mg/L),and PCT(0.22±0.07 ng/mL)were lower in the study group than in the control group(30.15±12.38 pg/mL,3.13±0.77 mg/L,0.38±0.12 ng/mL,respectively;P<0.05).The complication rate observed in the study group(9.52%)was lower than that in the control group(26.19%,P<0.05).The prognoses for the study group patients were better than those for the control patients(P<0.05).Patient care satisfaction was higher in the study group(95.24%)than in the control group(78.57%,P<0.05).CONCLUSION FMEA-based craniocerebral injury management effectively shortens the time spent on emergency care,reduces inflammatory stress and complication risk levels,and helps improve patient prognoses,while achieving high patient care satisfaction levels.
基金Supported by National Natural Science Foundation of China(Grant Nos.51135003,51205050,U1234208)Key National Science & Technology Special Project on"High-Grade CNC Machine Tools and Basic Manufacturing Equipments"(Grant No.2013ZX04011011)+1 种基金Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110042120020)Fundamental Research Funds for the Central
文摘Reliability allocation of computerized numerical controlled(CNC)lathes is very important in industry.Traditional allocation methods only focus on high-failure rate components rather than moderate failure rate components,which is not applicable in some conditions.Aiming at solving the problem of CNC lathes reliability allocating,a comprehensive reliability allocation method based on cubic transformed functions of failure modes and effects analysis(FMEA)is presented.Firstly,conventional reliability allocation methods are introduced.Then the limitations of direct combination of comprehensive allocation method with the exponential transformed FMEA method are investigated.Subsequently,a cubic transformed function is established in order to overcome these limitations.Properties of the new transformed functions are discussed by considering the failure severity and the failure occurrence.Designers can choose appropriate transform amplitudes according to their requirements.Finally,a CNC lathe and a spindle system are used as an example to verify the new allocation method.Seven criteria are considered to compare the results of the new method with traditional methods.The allocation results indicate that the new method is more flexible than traditional methods.By employing the new cubic transformed function,the method covers a wider range of problems in CNC reliability allocation without losing the advantages of traditional methods.
文摘The recognition and management of risk in donation process and blood product is critical to ensure donor and patient safety. To achieve this goal, the failure mode and effects analysis (FMEA) is a convenient method;moreover it was used to prevent the occurrence of adverse events and look at what could go strong at each step. This study aimed to utilize FMEA in central blood bank in Khartoum to evaluate the potential risk and adverse event that may occur during the donation process. According to the severity, occurrence and the detection of each failure mode, the risk priority number (RPN) was calculated to determine which of the failures should take priority to find a solution and applying corrective action to reduce the failure risk. The statistical package for social sciences (SPSS) version 11 was used as descriptive and analytical statistics tool. The FMEA technique provides a systematic method for finding vulnerabilities in a process before they result in an error, and in this study a satisfactory outcome was reached.
基金National Natural Science Foundation of China(No.51565019)the Scientific Research Start-Up Program of Tongji University,China(No.20141110)
文摘It is not objective to rate the decision-making factors in the traditional failure mode and effect analysis,so fuzzy semantic theory is used in this paper.Six fuzzy semantic scales and their corresponding semantics are summarized,and a defuzzification method is studied to obtain the fuzzy value table of the six fuzzy semantic scales.For the conflicts between experts in the traditional failure mode and effects analysis,a conflict-resolution algorithm is studied to obtain the failure risk order.Finally,a certain type of industrial valve is used as an example to prove the validity of the theory proposed in this paper.
文摘In view of the low level testability of armored equipment,the important significance of armored equipment testability growth is discussed in this paper.The failure mode effects and criticality analysis( FMECA) method to realize testability growth is introduced.Centering on the testability growth demands of new armored equipment,the deficiencies of traditional FMECA are analyzed.And an enhanced FMECA( EFMECA) method is proposed.The method increases the analysis contents,combines the information before the failure occurrence and impending failure modes together organically.Then the failure symptoms is analyzed,the failure modes and effects is determined,and the state development trend is predicted.Finally,the application of EFMECA method is illustrated by the example of the failure mode of typical armored equipment engine.
基金Young Scholar Program of Hebei Pharmaceutical Association Hospital Pharmaceutical Research Project(2020—Hbsyxhqn0029)Science and Technology Research and Development Project of Chengde City,Hebei Province(201706A043).
文摘[Objectives]To investigate the effect of healthcare failure mode and effect analysis(HFMEA)on reducing error risk of neonatal parenteral nutrition solution dispensing.[Methods]A research team was established to identify the failure mode(FM)in each link of the formulation process of neonatal parenteral nutrition solution by HFMEA,quantify the severity(S),occurrence(O)and detection(D)of FM,and evaluate FM by risk priority number(RPN).For FM with the values of RPN>16,failure cause analysis was conducted,and corresponding improvement measures were formulated.The weight coefficient and random consistency ratio(CR)of deployment process were calculated in Matlab R2018a by compiling the Analytic Hierarchy Process(AHP)program.Six months after the implementation of improvement measures,the implementation effect was evaluated by comparing the changes of the values of RPN which was evaluated comprehensively and the rate of dispensing errors before and after the implementation of HFMEA.[Results]In the preparation process of neonatal parenteral nutrition solution,a total of 13 FMs with medium and above risk were found,the weight coefficient of medical order review,dosing and mixing was 0.2703,the weight coefficient of drug dispensing check and review was 0.1432,the weight coefficient of print label was 0.1015,the weight coefficient of distribution was 0.0716,and CR=0.0491<0.1.After six months of intervention,the total RPN value decreased by 64.81%from 127.8 to 45.0.The deployment error rates were significantly lower after the implementation,and the difference was statistically significant(P<0.05).[Conclusions]HFMEA can effectively reduce the error risk in preparation of neonatal parenteral nutrition solution,improve the quality of dispensing and promote the safety of neonatal medication.
文摘Failure mode and effects analysis (FMEA) offers a quick and easy way for identifying ranking-order for all failure modes in a system or a product. In FMEA the ranking methods is so called risk priority number (RPN), which is a mathematical product of severity (S), occurrence (0), and detection (D). One of major disadvantages of this ranking-order is that the failure mode with different combination of SODs may generate same RPN resulting in difficult decision-making. Another shortfall of FMEA is lacking of discerning contribution factors, which lead to insufficient information about scaling of improving effort. Through data envelopment analysis (DEA) technique and its extension, the proposed approach evolves the current rankings for failure modes by exclusively investigating SOD in lieu of RPN and to furnish with improving sca.les for SOD. The purpose of present study is to propose a state-of-the-art new approach to enhance assessment capabilities of failure mode and effects analysis (FMEA). The paper proposes a state-of-the-art new approach, robust, structured and useful in practice, for failure analysis.
文摘The failure modes and effects analysis (FMEA) is widely applied in manufacturing industries in various phases of the product life cycle to evaluate the system, its design and processes for failures that can occur. The FMEA team often demonstrates different opinions and these different types of opinions are very difficult to incorporate into the FMEA by the traditional risk priority number model. In this paper, for each of the Occurrence, Severity and Detectivity parameters a fuzzy set is defined and the opinion of each FMEA team members is considered. These opinions are considered simultaneously with weights that are given to each individual based on their skills and experience levels. In addition, the opinion of the costumer is considered for each of the FMEA parameters. Then, the Risk Priority Numbers (RPN) is calculated using a Multi Input Single Output (MISO) fuzzy expert system. The proposed model is applied for prioritizing the failures of Peugeot 206 Engine assembly line in IKCo (Iran Khodro Company).
基金National Natural Science Foundation of ChinaUnder Grant No: 50535010
文摘In this paper, a numerical method for correlation sensitivity analysis of a nonlinear random vibration system is presented. Based on the first passage failure model, the probability perturbation method is employed to determine the statistical characteristics of failure modes and the correlation between them. The sensitivity of correlation between failure modes with respect to random parameters characterizing the uncertainty of the hysteretic loop is discussed. In a numerical example, a two-DOF shear structure with uncertain hysteretic restoring force is considered. The statistical characteristics of response, failure modes and the sensitivity of random hysteretic loop parameters are provided, and also compared with a Monte Carlo simulation.
基金Projects(51679117,11772358,51774322,51474249,51404179,51274249)supported by the National Natural Science Foundation of China。
文摘A generalized nonlinear Baker failure criterion is employed with the upper bound limit analysis to study the surrounding rock stability of underground cavities. A three-dimensional(3D) failure mode is established by extending the two-dimensional(2D) failure mode, which offers an upper bound expression of the surrounding rock pressure. This method is validated with a series of examples before the influence of four parameters of scale parameter, curvature parameter, shift parameter and lateral pressure coefficient, on the surrounding rock pressure is analyzed. According to these results, failure ranges of the underground cavities are determined. The following conclusions are reached:(1) the proposed approach is more accurate to predict surrounding rock pressure than the Mohr-Coulomb failure criterion;(2) the surrounding rock with large scale parameter, curvature parameter, shift parameter, and lateral pressure coefficient can lead to a more stable underground cavity;(3) the failure range in 3D mode can be predicted according to the upper bound solutions.
基金Project(51275205)supported by the National Natural Science Foundation of China
文摘A new method of system failure analysis was proposed. First, considering the relationships between the failure subsystems,the decision making trial and evaluation laboratory(DEMATEL) method was used to calculate the degree of correlation between the failure subsystems, analyze the combined effect of related failures, and obtain the degree of correlation by using the directed graph and matrix operations. Then, the interpretative structural modeling(ISM) method was combined to intuitively show the logical relationship of many failure subsystems and their influences on each other by using multilevel hierarchical structure model and obtaining the critical subsystems. Finally, failure mode effects and criticality analysis(FMECA) was used to perform a qualitative hazard analysis of critical subsystems, determine the critical failure mode, and clarify the direction of reliability improvement.Through an example, the result demonstrates that the proposed method can be efficiently applied to system failure analysis problems.
文摘Ply-by-ply failure analysis of symmetric and anti-symmetric laminates under uniform sinusoidal transverse dynamic loading is performed for a specified duration.The study investigates the first ply failure load,followed by the detection of successive ply failures and their failure modes using various failure theories.Some of the well-established failure theories,mostly used by the researchers,are considered for the failure prediction in laminates.The finite element computational model based on higher order shear deformation displacement field is used for the failure analysis and the complete methodology is computer coded using FORTRAN.The ply-discount stiffness reduction scheme is employed to modify the material properties of the failed lamina.The failure theories used in the analysis are compared according to their ability to predict failure load,failed ply,failure mode and progression of failure.The failure analysis is performed for both the cross-ply and angle-ply laminates with all edges simply supported and clamped.The significance of fibre orientation and stacking sequence in terms of the strength of a laminate and failure progression is also highlighted.
基金Scientific Research Foundation of Guangdong Polytechnic,China(No.K2010201)
文摘Unsupervised and supervised pattern recognition( PR)techniques are used to classify the acoustic emission( AE) data originating from the quasi-isotropic self-reinforced polyethylene composites,in order to identify the various mechanisms in the multiangle-ply thermoplastic composites. Ultra-high molecular weight polyethylene / low density polyethylene( UHMWPE / LDPE)composites were made and tested under quasi-static tensile load. The failure process was monitored by the AE technique. The collected AE signals were classified by unsupervised and supervised PR techniques, respectively. AE signals were clustered with unsupervised PR scheme automatically and mathematically. While in the supervised PR scheme,the labeled AE data from simple lay-up UHMWPE / LDPE laminates were utilized as the reference data.Comparison was drawn according to the analytical results. Fracture surfaces of the UHMWPE / LDPE specimens were observed by a scanning electron microscope( SEM) for some physical support. By combining both classification results with the observation results,correlations were established between the AE signal classes and their originating damage modes. The comparison between the two classifying schemes showed a good agreement in the main damage modes and their failure process. It indicates both PR techniques are powerful for the complicated thermoplastic composites. Supervised PR scheme can lead to a more precise classification in that a suitable reference data set is input.
基金funded by the Sichuan Science and Technology Innovation Seedling Project Funding Project (Grant No.2021112).
文摘In the engineering.to ensure the quality and safety,it is necessary to carry out reliability analysis on it.When conducting reliability analysis in engineering.a 1arge rumber of small1 failure probability problems will be encountered.For such problems,the traditional Monte Carlo method needs a 1ot of samples,and the calculation efficiency is extremely 1ow,while the subset sinmulation method can efficiently estimate the relLability index of the small failure probability problem with litle samples.Therefore,this paper takes the application of the subset simulation method in the reliability analysis of the small failure probability structure as the object,constructs the reliability analysis method of the single failure mode of the system and applies the method to a mathematical example and a single-story gate.Through the rigid frame example,it can be seen that this method is beneficial to improve the calculation efficiency and accuracy.
文摘BACKGROUND Utilizing failure mode and effects analysis(FMEA)in operating room nursing provides valuable insights for the care of patients undergoing radical gastric cancer surgery.AIM To evaluate the impact of FMEA on the risk of adverse events and nursing-care quality in patients undergoing radical surgery.METHODS Among 230 patients receiving radical cancer surgery between May 2019 and May 2024,115 were assigned to a control group that received standard intraoperative thermoregulation,while the observation group benefited from FMEA-modeled operating room care.Clinical indicators,stress responses,postoperative gastroin-testinal function recovery,nursing quality,and the incidence of adverse events were compared between the two groups.RESULTS Significant differences were observed in bed and hospital stay durations between the groups(P<0.05).There were no significant differences in intraoperative blood loss or postoperative body temperature(P>0.05).Stress scores improved in both groups post-nursing(P<0.05),with the observation group showing lower stress scores than the control group(P<0.05).Gastrointestinal function recovery and nursing quality scores also differed significantly(P<0.05).Additionally,the incidence of adverse events such as stress injuries and surgical infections varied notably between the groups(P<0.05).CONCLUSION Incorporating FMEA into operating room nursing significantly enhances patient care by improving safety,expediting recovery,and reducing healthcare-associated risks.
基金Project(2011ZA05) supported by the State Key Laboratory’s Autonomous Project of Subtropical Building Science in South China University of Technology
文摘In order to apply the performance-based seismic design, an engineer must first find out whether the column is expected to fail in shear before or after flexural yielding. According to column failure characteristics and failure mode of reinforced concrete column, the UW-PEER structure performance database was discussed and analyzed. In order to investigate the relevance of failure mode and factors such as longitudinal reinforcement ratio, transverse reinforcement ratio, hoop spacing to depth ratio, aspect ratio, shearing resistance demand to shear capacity ratio and axial load ratio, Fisher's discriminant analysis(FDA) of the above factors was carried out. A discriminant function was developed to identify column failure mode. Results show that three factors, i.e., Vp /Vn, hoop spacing to depth ratio and aspect ratio have important influence on the failure mode. The failure mode has less to do with longitudinal reinforcement ratio, transverse reinforcement ratio and axial load ratio. Through using these three factors and the model proposed, over 85.6% of the original grouped cases were correctly classified. The value of coefficient of Vp /Vn is the largest, which means that discriminant equation is most sensitive to the shearing resistance demand to shear capacity ratio.
基金Project (50099620) supported by the National Natural Science Foundation of China
文摘A stratified rock mass model was founded by FLAC^3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visually reflect the failure modes of rock samples under different inclination angles β of structural plane. The stiffness of rock sample before peak strength changes in the compressive procedure. With the increase of β, the compressive strength σc of rock sample decreases firstly and then increases; when β is in the range of 20°-30° and 80°-90°, σc has the largest sensitivity to r; while β falls in the range of 30°-70°, σc varies little. When φj〈β〈90° ( φj is friction angle of structure plane), the results obtained from numerical simulation and theoretical analysis are in almost the same values; while β〈 φj or β=90°, they are in great different values. The results obtained from theoretical analysis are obvious larger than those from numerical simulation; and the results from numerical simulation can reflect the difference of compressive strength of rock samples for the two situations of β≥φj and β=90°, which is in more accordance with the real situation.
基金supported by the National Natural Science Foundation of China (Nos. 51268054 and 51468061)the Natural Science Foundation of Tianjin, China (No. 13JCQNJC07300)
文摘Shear failure in panel zones and plastic hinges in steel beams are the two major failure modes of connections between concrete-filled steel tubular(CFST) columns and steel beams. To investigate the behavior of this type of connection in both modes,two through-diaphragm connections were tested under cyclic and monotonic loadings and the load-carrying capacity,ductility,and strength of degradation of connections were discussed. Using ABAQUS software,we developed nonlinear finite-element models(FEMs) to simulate the load-carrying capacity and failure modes of the connections under monotonic loading. The finite-element(FE) analysis and test results showed reasonable agreement for the through-diaphragm connections,which confirms the accuracy of FEMs in predicting the load-carrying capacity and failure modes of connections. Based on the validated FEM,a parametric study was then conducted to investigate the infl uence of the thicknesses of the tube and diaphragm on the load-carrying capacity and failure modes of these connections. The results indicate that the strength,stiff ness,and load-carrying capacity are infl uenced less by the thickness of the diaphragm,and more by the thickness of the steel tube. According to the FE analysis results,it can be found that the critical condition between the two failure modes is determined by the shear resistance and bending resistance.
基金Supported by the National Natural Science Foundation of China(50975011)
文摘To understand the relationship between the collapse mechanisms and geometry parameters of sandwich plate with two aluminum alloy faces and one polyurethane foam core, samples subjected to three-point bending loads were studied through simulation, test and analytic methods. Based on published papers, the dimensionless values of limit loads for different failure modes were modified according to real test condition. The load-deformation relation from the analytical formulae was compared with that from experimental and numerical results. A mechanism map was provided to reveal the dependence of the dominant collapse mechanism upon the geometry parameters of the face and the core. The results show that the prediction accuracy was high only if the face thickness was much smaller than the core thickness.