期刊文献+
共找到1,198篇文章
< 1 2 60 >
每页显示 20 50 100
The Books Recommend Service System Based on Improved Algorithm for Mining Association Rules
1
作者 王萍 《魅力中国》 2009年第29期164-166,共3页
The Apriori algorithm is a classical method of association rules mining.Based on analysis of this theory,the paper provides an improved Apriori algorithm.The paper puts foward with algorithm combines HASH table techni... The Apriori algorithm is a classical method of association rules mining.Based on analysis of this theory,the paper provides an improved Apriori algorithm.The paper puts foward with algorithm combines HASH table technique and reduction of candidate item sets to enhance the usage efficiency of resources as well as the individualized service of the data library. 展开更多
关键词 association rules DATA mining algorithm Recommend BOOKS SERVICE Model
下载PDF
Database Encoding and A New Algorithm for Association Rules Mining
2
作者 Tong Wang Pilian He 《通讯和计算机(中英文版)》 2006年第3期77-81,共5页
下载PDF
Spatial Multidimensional Association Rules Mining in Forest Fire Data
3
作者 Imas Sukaesih Sitanggang 《Journal of Data Analysis and Information Processing》 2013年第4期90-96,共7页
Hotspots (active fires) indicate spatial distribution of fires. A study on determining influence factors for hotspot occurrence is essential so that fire events can be predicted based on characteristics of a certain a... Hotspots (active fires) indicate spatial distribution of fires. A study on determining influence factors for hotspot occurrence is essential so that fire events can be predicted based on characteristics of a certain area. This study discovers the possible influence factors on the occurrence of fire events using the association rule algorithm namely Apriori in the study area of Rokan Hilir Riau Province Indonesia. The Apriori algorithm was applied on a forest fire dataset which containeddata on physical environment (land cover, river, road and city center), socio-economic (income source, population, and number of school), weather (precipitation, wind speed, and screen temperature), and peatlands. The experiment results revealed 324 multidimensional association rules indicating relationships between hotspots occurrence and other factors.The association among hotspots occurrence with other geographical objects was discovered for the minimum support of 10% and the minimum confidence of 80%. The results show that strong relations between hotspots occurrence and influence factors are found for the support about 12.42%, the confidence of 1, and the lift of 2.26. These factors are precipitation greater than or equal to 3 mm/day, wind speed in [1m/s, 2m/s), non peatland area, screen temperature in [297K, 298K), the number of school in 1 km2 less than or equal to 0.1, and the distance of each hotspot to the nearest road less than or equal to 2.5 km. 展开更多
关键词 DATA mining SPATIAL association rule HOTSPOT OCCURRENCE APRIORI algorithm
下载PDF
Quantum Algorithm for Mining Frequent Patterns for Association Rule Mining
4
作者 Abdirahman Alasow Marek Perkowski 《Journal of Quantum Information Science》 CAS 2023年第1期1-23,共23页
Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting corre... Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits. 展开更多
关键词 Data mining association rule mining Frequent Pattern Apriori algorithm Quantum Counter Quantum Comparator Grover’s Search algorithm
下载PDF
Ethics Lines and Machine Learning: A Design and Simulation of an Association Rules Algorithm for Exploiting the Data
5
作者 Patrici Calvo Rebeca Egea-Moreno 《Journal of Computer and Communications》 2021年第12期17-37,共21页
Data mining techniques offer great opportunities for developing ethics lines whose main aim is to ensure improvements and compliance with the values, conduct and commitments making up the code of ethics. The aim of th... Data mining techniques offer great opportunities for developing ethics lines whose main aim is to ensure improvements and compliance with the values, conduct and commitments making up the code of ethics. The aim of this study is to suggest a process for exploiting the data generated by the data generated and collected from an ethics line by extracting rules of association and applying the Apriori algorithm. This makes it possible to identify anomalies and behaviour patterns requiring action to review, correct, promote or expand them, as appropriate. 展开更多
关键词 Data mining Ethics Lines association rules Apriori algorithm COMPANY
下载PDF
A Novel Incremental Mining Algorithm of Frequent Patterns for Web Usage Mining 被引量:1
6
作者 DONG Yihong ZHUANG Yueting TAI Xiaoying 《Wuhan University Journal of Natural Sciences》 CAS 2007年第5期777-782,共6页
Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a... Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a novel algorithm updating for global frequent patterns-IPARUC. A rapid clustering method is introduced to divide database into n parts in IPARUC firstly, where the data are similar in the same part. Then, the nodes in the tree are adjusted dynamically in inserting process by "pruning and laying back" to keep the frequency descending order so that they can be shared to approaching optimization. Finally local frequent itemsets mined from each local dataset are merged into global frequent itemsets. The results of experimental study are very encouraging. It is obvious from experiment that IPARUC is more effective and efficient than other two contrastive methods. Furthermore, there is significant application potential to a prototype of Web log Analyzer in web usage mining that can help us to discover useful knowledge effectively, even help managers making decision. 展开更多
关键词 incremental algorithm association rule frequent pattern tree web usage mining
下载PDF
基于改进FP-Growth算法和贝叶斯的营业线施工安全风险分析
7
作者 蔡近近 宋瑞 +2 位作者 何世伟 赵日鑫 姜俊平 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2024年第8期3370-3381,共12页
铁路营业线施工事故致因因素众多且存在关联关系,挖掘事故致因之间的关联关系和因果关系对事故的预防管控具有重要意义。通过文本挖掘对2010—2022年某路局营业线事故调查报告进行处理,提取出51个事故致因因素。基于事故因果连锁理论将... 铁路营业线施工事故致因因素众多且存在关联关系,挖掘事故致因之间的关联关系和因果关系对事故的预防管控具有重要意义。通过文本挖掘对2010—2022年某路局营业线事故调查报告进行处理,提取出51个事故致因因素。基于事故因果连锁理论将致因因素分为人因层、设备层、环境层、管理层4个层级进行分层分析,构建铁路营业线施工事故致因体系。基于压缩算法和差分编码对传统FP-Growth算法进行改进,以此对铁路营业线施工事故致因进行挖掘,找到满足提升度要求的高支持度关联规则和高置信度关联规则,发现关键致因关联和事故致因规律。基于贝叶斯网络理论、致因关联关系和专家经验建立营业线施工安全风险贝叶斯网络,结合复杂网络理论分析网络节点度、聚类系数与节点介数等特征,找到关键致因因素。在此基础上,运用因果推理和故障诊断推理进一步剖析营业线施工过程中的高风险致因,并从“人防、物防、技防”3方面提出预防管控措施。案例结果表明:施工人员操作不当、施工造成接触网故障、施工导致设施设备侵限、施工作业损害电缆设备、施工造成轨道电路故障和施工、检修、清扫设备耽误列车类事故之间的关联关系较为频繁,且为红光带事故的高概率致因,在施工作业过程中应多层次重点预防管控。研究成果为铁路营业线施工安全管理提供一种新的风险分析方法。 展开更多
关键词 铁路营业线施工事故 改进fp-growth算法 关联规则挖掘 贝叶斯网络推理 致因体系
下载PDF
基于FP-Growth算法的运毒嫌疑车辆智能推荐研究
8
作者 陈柏翰 罗安飞 《贵州警察学院学报》 2024年第3期84-91,共8页
毒品运输是毒品犯罪的重要环节,虽然毒品运输的手段越来越多样化,但公路运输仍然是主要的运输方式之一,而运毒人员有着各自经典的运毒模式。文中对运毒模式进行特征挖掘,发现存在前后车伴随的规律,根据实际业务中前后车行为以半小时为... 毒品运输是毒品犯罪的重要环节,虽然毒品运输的手段越来越多样化,但公路运输仍然是主要的运输方式之一,而运毒人员有着各自经典的运毒模式。文中对运毒模式进行特征挖掘,发现存在前后车伴随的规律,根据实际业务中前后车行为以半小时为时间间隔导向,建模时选择PostgreSQL数据库。在数据库中建立过往车辆前半小时中间表、后半小时中间表、中间跨度表,运用人工智能数据挖掘技术实现从大量的通行车辆中抽取车辆伴随信息,采用FP-Growth算法挖掘频繁项集,查找高频出现车牌号,通过设定阈值并找到对应的关联规则,经过缉毒民警提供的黑名单进行过滤并排序,最后进行车辆嫌疑度的推荐,为民警拦截嫌疑车辆提供支持,能够在一定程度上提高对嫌疑车辆排查的针对性、准确性和有效性。 展开更多
关键词 毒品运输 运毒模式 特征挖掘 fp-growth算法 关联规则
下载PDF
Adaptive Interval Configuration to Enhance Dynamic Approach for Mining Association Rules
9
作者 胡侃 张伟荦 夏绍玮 《Tsinghua Science and Technology》 SCIE EI CAS 1999年第1期57-65,共9页
ost proposed algorithms for mining association rules follow the conventional level wise approach. The dynamic candidate generation idea introduced in the dynamic itemset counting (DIC) algorithm broke away from the l... ost proposed algorithms for mining association rules follow the conventional level wise approach. The dynamic candidate generation idea introduced in the dynamic itemset counting (DIC) algorithm broke away from the level wise limitation which could find the large itemsets using fewer passes over the database than level wise algorithms. However, the dynamic approach is very sensitive to the data distribution of the database and it requires a proper interval size. In this paper an optimization technique named adaptive interval configuration (AIC) has been developed to enhance the dynamic approach. The AIC optimization has the following two functions. The first is that a homogeneous distribution of large itemsets over intervals can be achieved so that less unnecessary candidates could be generated and less database scanning passes are guaranteed. The second is that the near optimal interval size could be determined adaptively to produce the best response time. We also developed a candidate pruning technique named virtual partition pruning to reduce the size 2 candidate set and incorporated it into the AIC optimization. Based on the optimization technique, we proposed the efficient AIC algorithm for mining association rules. The algorithms of AIC, DIC and the classic Apriori were implemented on a Sun Ultra Enterprise 4000 for performance comparison. The results show that the AIC performed much better than both DIC and Apriori, and showed a strong robustness. 展开更多
关键词 association rules data mining dynamic process adaptive algorithm
原文传递
Mining item-item and between-set correlated association rules
10
作者 Bin SHEN Min YAO +2 位作者 Li-jun XIE Rong ZHU Yun-ting TANG 《Journal of Zhejiang University-Science C(Computers and Electronics)》 SCIE EI 2011年第2期96-109,共14页
To overcome the failure in eliminating suspicious patterns or association rules existing in traditional association rules mining, we propose a novel method to mine item-item and between-set correlated association rule... To overcome the failure in eliminating suspicious patterns or association rules existing in traditional association rules mining, we propose a novel method to mine item-item and between-set correlated association rules. First, we present three measurements: the association, correlation, and item-set correlation measurements. In the association measurement, the all-confidence measure is used to filter suspicious cross-support patterns, while the all-item-confidence measure is applied in the correlation measurement to eliminate spurious association rules that contain negatively correlated items. Then, we define the item-set correlation measurement and show its corresponding properties. By using this measurement, spurious association rules in which the antecedent and consequent item-sets are negatively correlated can be eliminated. Finally, we propose item-item and between-set correlated association rules and two mining algorithms, I&ISCoMine_AP and I&ISCoMine_CT. Experimental results with synthetic and real retail datasets show that the proposed method is effective and valid. 展开更多
关键词 Item-item and between-set correlated association rules All-confidence All-item-confidence Item-set correlation mining algorithms Pruning effect
原文传递
Association rule mining algorithm based on Spark for pesticide transaction data analyses
11
作者 Xiaoning Bai Jingdun Jia +3 位作者 Qiwen Wei Shuaiqi Huang Weicheng Du Wanlin Gao 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2019年第5期162-166,共5页
With the development of smart agriculture,the accumulation of data in the field of pesticide regulation has a certain scale.The pesticide transaction data collected by the Pesticide National Data Center alone produces... With the development of smart agriculture,the accumulation of data in the field of pesticide regulation has a certain scale.The pesticide transaction data collected by the Pesticide National Data Center alone produces more than 10 million records daily.However,due to the backward technical means,the existing pesticide supervision data lack deep mining and usage.The Apriori algorithm is one of the classic algorithms in association rule mining,but it needs to traverse the transaction database multiple times,which will cause an extra IO burden.Spark is an emerging big data parallel computing framework with advantages such as memory computing and flexible distributed data sets.Compared with the Hadoop MapReduce computing framework,IO performance was greatly improved.Therefore,this paper proposed an improved Apriori algorithm based on Spark framework,ICAMA.The MapReduce process was used to support the candidate set and then to generate the candidate set.After experimental comparison,when the data volume exceeds 250 Mb,the performance of Spark-based Apriori algorithm was 20%higher than that of the traditional Hadoop-based Apriori algorithm,and with the increase of data volume,the performance improvement was more obvious. 展开更多
关键词 SPARK association rule mining ICAMA algorithm big data pesticide regulation MAPREDUCE
原文传递
FP-growth算法的实现方法研究 被引量:27
12
作者 王新宇 杜孝平 谢昆青 《计算机工程与应用》 CSCD 北大核心 2004年第9期174-176,共3页
事务数据库中频繁模式的挖掘研究作为关联规则等许多数据挖掘问题的核心工作,已经研究了许多年。早期算法大都是Apriori型算法,即首先产生候选集,然后在候选集的基础上找出频繁模式,候选集的产生往往是耗时的,特别是挖掘富模式或长模式... 事务数据库中频繁模式的挖掘研究作为关联规则等许多数据挖掘问题的核心工作,已经研究了许多年。早期算法大都是Apriori型算法,即首先产生候选集,然后在候选集的基础上找出频繁模式,候选集的产生往往是耗时的,特别是挖掘富模式或长模式时。JianweiHan等人提出了一种新颖的数据结构FP-tree及基于其上的FP-growth算法,用于有效的富模式与长模式挖掘。由于不同的实现方法可能会导致不同的挖掘效率,该文在讨论FP-growth算法的基础上,采用了几种不同的方法来实现它,并用几个数据库对它们的性能进行了比较。 展开更多
关键词 频繁模式 关联规则 数据挖掘 算法
下载PDF
基于布尔矩阵和MapReduce的FP-Growth算法 被引量:22
13
作者 陈兴蜀 张帅 +1 位作者 童浩 崔晓靖 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第1期135-141,共7页
关联规则挖掘是数据挖掘的一个重要组成部分.为提高关联规则的挖掘效率,提出了一种基于布尔矩阵和MapReduce的FP-Growth算法(BPFP),分析了算法的时间和空间复杂度.该算法使用Hadoop框架和布尔矩阵以减少对事务数据的扫描次数,利用两次Ma... 关联规则挖掘是数据挖掘的一个重要组成部分.为提高关联规则的挖掘效率,提出了一种基于布尔矩阵和MapReduce的FP-Growth算法(BPFP),分析了算法的时间和空间复杂度.该算法使用Hadoop框架和布尔矩阵以减少对事务数据的扫描次数,利用两次MapReduce来实现频繁项集的挖掘.在多个数据集上的实验结果表明,与原FP-Growth算法相比,BPFP算法具有更高的执行效率、更好的加速比. 展开更多
关键词 数据挖掘 关联规则 布尔矩阵 MAPREDUCE fp-growth算法
下载PDF
基于FP-growth算法的高校群体性突发事件关联规则分析 被引量:14
14
作者 姬浩 苏兵 吕美 《中国安全科学学报》 CAS CSCD 北大核心 2012年第12期144-151,共8页
为有效预防高校群体性突发事件,借助数据挖掘关联规则挖掘理论,在分析高校突发事件关键诱发因素基础上,构建基于FP-growth算法的高校群体性突发事件关联规则挖掘模型。并将模型应用于事务数据库数据的分析中,研究关键诱发因素间关联关系... 为有效预防高校群体性突发事件,借助数据挖掘关联规则挖掘理论,在分析高校突发事件关键诱发因素基础上,构建基于FP-growth算法的高校群体性突发事件关联规则挖掘模型。并将模型应用于事务数据库数据的分析中,研究关键诱发因素间关联关系,实现强关联规则输出。研究结果表明,多数高校群体性突发事件的发生与日期没有必然联系;内部管理因素、内外部突发事件、内部突发事件、政治因素是诱发高校群体性突发事件的主要因素,且外部因素导致的群体性突发事件影响力远远超过内部因素的影响力;当突发事件发生后,应急处置的有效性是决定突发事件影响力的重要因素。 展开更多
关键词 高校安全 群体性突发事件 数据挖掘 fp-growth算法 关联规则
下载PDF
基于数据库用户行为分析的改进FP-Growth算法 被引量:5
15
作者 周云霞 栗磊 《科学技术与工程》 2011年第18期4380-4383,共4页
数据库是信息系统的核心,是最吸引攻击者的目标。其用户行为记录是一种特定的类型,有相对固定的成份。FP-Growth算法在规则挖掘时会产生一些冗余的、无意义的规则。首先给出数据库用户行为的定义,将数据库的用户行为属性按重要性阈值排... 数据库是信息系统的核心,是最吸引攻击者的目标。其用户行为记录是一种特定的类型,有相对固定的成份。FP-Growth算法在规则挖掘时会产生一些冗余的、无意义的规则。首先给出数据库用户行为的定义,将数据库的用户行为属性按重要性阈值排序,并从中选取关键属性或属性组。在FP-Growth算法的基础上提出一种基于用户行为分析的BFP-Growth算法,避免产生无意义的规则,节省了存储空间和时间,提高了挖掘效率。 展开更多
关键词 数据挖掘 用户行为 关联规则 Bfp-growth算法
下载PDF
基于改进FP-Growth算法的中药方剂配伍规律挖掘研究 被引量:2
16
作者 董辉 《石家庄学院学报》 2011年第6期63-67,共5页
中药方剂即中药复方,是中国中医药实践经验和智慧的结晶,几千年来已积累中药方剂达十余万首,而如何利用这一巨大的方剂库,开发研制新的安全有效的方剂,是一亟待解决的问题.数据挖掘技术的出现及利用这一技术对中药方剂配伍规律进... 中药方剂即中药复方,是中国中医药实践经验和智慧的结晶,几千年来已积累中药方剂达十余万首,而如何利用这一巨大的方剂库,开发研制新的安全有效的方剂,是一亟待解决的问题.数据挖掘技术的出现及利用这一技术对中药方剂配伍规律进行发掘,既能大力推动中国中医信息化建设,又可快速发现隐含在方剂库中的重要的知识,也能为中医学走向世界提供强有力的技术支持,因此对中药方剂进行数据挖掘不仅是有必要的,更具有实际意义. 展开更多
关键词 数据挖掘 关联规则 中药方剂 fp-growth算法
下载PDF
FP-growth算法的一种优化实现 被引量:1
17
作者 陈文 王诗兵 《阜阳师范学院学报(自然科学版)》 2005年第2期56-58,共3页
研究工作者已经提出了许多对事务数据库中频繁模式、关联规则的挖掘算法.早期算法有Apriori算法,然而该算法利用候选项集找频繁项集,而候选项集的产生往往是非常耗时的.JianweiHan等人提出了一种改进的算法,FP-growth算法.该算法不产生... 研究工作者已经提出了许多对事务数据库中频繁模式、关联规则的挖掘算法.早期算法有Apriori算法,然而该算法利用候选项集找频繁项集,而候选项集的产生往往是非常耗时的.JianweiHan等人提出了一种改进的算法,FP-growth算法.该算法不产生候选项集,效率比Apriori算法提高了近一个数量级.在描述FP-growth算法的基础上,具体讨论了如何优化数据结构,有效的实现该算法. 展开更多
关键词 fp-growth算法 APRIORI算法 优化 候选项集 事务数据库 频繁模式 挖掘算法 关联规则 频繁项集 数据结构 工作者 HAN 数量级 效率比
下载PDF
改进的FP-growth关联规则算法及其在图书推荐系统中的应用 被引量:2
18
作者 刘敏娜 吴建卫 《微型电脑应用》 2014年第12期45-47,共3页
在FP-growth关联规则算法的基础上提出了基于动态二维数组的算法,引入可变二维数组结构,动态的将事务数据库存入该数组中,可以大大提高数据挖掘的效率。并以图书馆管理系统中的图书借阅数据作为训练数据,使用改进的FP-growth算法实现了... 在FP-growth关联规则算法的基础上提出了基于动态二维数组的算法,引入可变二维数组结构,动态的将事务数据库存入该数组中,可以大大提高数据挖掘的效率。并以图书馆管理系统中的图书借阅数据作为训练数据,使用改进的FP-growth算法实现了高校图书推荐系统,本系统能够从图书馆图书借阅记录中挖掘和发现读者借阅行为中隐含的规律,得到读者与图书的频繁项集,从而可以实现对不同身份的读者推荐不同类型的图书功能。 展开更多
关键词 数据挖掘 关联规则算法 fp-growth算法 频繁项集 高校图书推荐系统
下载PDF
FP-growth算法在高职院校贫困生认定工作中的应用研究 被引量:4
19
作者 曹路舟 《西安文理学院学报(自然科学版)》 2015年第1期68-72,共5页
随着高职院校招生规模的不断扩大,经济困难的学生越来越多,贫困生的资助工作难度也不断加大,传统的贫困生认定工作方法越来越不能满足现实的需要,为了完善并做好目前的高职院校贫困生认定工作,我们运用FP-growth算法对所有收集到的贫困... 随着高职院校招生规模的不断扩大,经济困难的学生越来越多,贫困生的资助工作难度也不断加大,传统的贫困生认定工作方法越来越不能满足现实的需要,为了完善并做好目前的高职院校贫困生认定工作,我们运用FP-growth算法对所有收集到的贫困生数据进行数据挖掘,发现隐藏在这些数据背后潜在的价值,找出一些数据之间内在的关联,给贫困生的认定工作提供一定的帮助,从而提高贫困生认定工作的效率. 展开更多
关键词 数据挖掘 关联规则 fp-growth算法
下载PDF
基于并行FP-growth算法挖掘网上关联交易规则
20
作者 杨种学 《南京晓庄学院学报》 2005年第5期65-70,共6页
发现关联规则是数据挖掘技术的重要任务之一。之前提出的绝大多数算法需要多次遍历数据库才能产生频繁项集,造成巨大的CPU和内存开销。根据网上交易数据海量的特点,提出了一种基于频繁模式增长(FP-growth)的并行算法。该算法可以在不产... 发现关联规则是数据挖掘技术的重要任务之一。之前提出的绝大多数算法需要多次遍历数据库才能产生频繁项集,造成巨大的CPU和内存开销。根据网上交易数据海量的特点,提出了一种基于频繁模式增长(FP-growth)的并行算法。该算法可以在不产生候选集的基础上并行的挖掘海量数据。试验证明该算法可以缓解了项目数量巨大而内存不足的矛盾,减少了算法的执行时间。利用该算法对网上交易进行关联规则挖掘,发现了有价值的决策支持信息。 展开更多
关键词 数据挖掘 关联规则 fp-growth 并行算法 网上交易
下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部