The Apriori algorithm is a classical method of association rules mining.Based on analysis of this theory,the paper provides an improved Apriori algorithm.The paper puts foward with algorithm combines HASH table techni...The Apriori algorithm is a classical method of association rules mining.Based on analysis of this theory,the paper provides an improved Apriori algorithm.The paper puts foward with algorithm combines HASH table technique and reduction of candidate item sets to enhance the usage efficiency of resources as well as the individualized service of the data library.展开更多
Hotspots (active fires) indicate spatial distribution of fires. A study on determining influence factors for hotspot occurrence is essential so that fire events can be predicted based on characteristics of a certain a...Hotspots (active fires) indicate spatial distribution of fires. A study on determining influence factors for hotspot occurrence is essential so that fire events can be predicted based on characteristics of a certain area. This study discovers the possible influence factors on the occurrence of fire events using the association rule algorithm namely Apriori in the study area of Rokan Hilir Riau Province Indonesia. The Apriori algorithm was applied on a forest fire dataset which containeddata on physical environment (land cover, river, road and city center), socio-economic (income source, population, and number of school), weather (precipitation, wind speed, and screen temperature), and peatlands. The experiment results revealed 324 multidimensional association rules indicating relationships between hotspots occurrence and other factors.The association among hotspots occurrence with other geographical objects was discovered for the minimum support of 10% and the minimum confidence of 80%. The results show that strong relations between hotspots occurrence and influence factors are found for the support about 12.42%, the confidence of 1, and the lift of 2.26. These factors are precipitation greater than or equal to 3 mm/day, wind speed in [1m/s, 2m/s), non peatland area, screen temperature in [297K, 298K), the number of school in 1 km2 less than or equal to 0.1, and the distance of each hotspot to the nearest road less than or equal to 2.5 km.展开更多
Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting corre...Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits.展开更多
Data mining techniques offer great opportunities for developing ethics lines whose main aim is to ensure improvements and compliance with the values, conduct and commitments making up the code of ethics. The aim of th...Data mining techniques offer great opportunities for developing ethics lines whose main aim is to ensure improvements and compliance with the values, conduct and commitments making up the code of ethics. The aim of this study is to suggest a process for exploiting the data generated by the data generated and collected from an ethics line by extracting rules of association and applying the Apriori algorithm. This makes it possible to identify anomalies and behaviour patterns requiring action to review, correct, promote or expand them, as appropriate.展开更多
Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a...Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a novel algorithm updating for global frequent patterns-IPARUC. A rapid clustering method is introduced to divide database into n parts in IPARUC firstly, where the data are similar in the same part. Then, the nodes in the tree are adjusted dynamically in inserting process by "pruning and laying back" to keep the frequency descending order so that they can be shared to approaching optimization. Finally local frequent itemsets mined from each local dataset are merged into global frequent itemsets. The results of experimental study are very encouraging. It is obvious from experiment that IPARUC is more effective and efficient than other two contrastive methods. Furthermore, there is significant application potential to a prototype of Web log Analyzer in web usage mining that can help us to discover useful knowledge effectively, even help managers making decision.展开更多
ost proposed algorithms for mining association rules follow the conventional level wise approach. The dynamic candidate generation idea introduced in the dynamic itemset counting (DIC) algorithm broke away from the l...ost proposed algorithms for mining association rules follow the conventional level wise approach. The dynamic candidate generation idea introduced in the dynamic itemset counting (DIC) algorithm broke away from the level wise limitation which could find the large itemsets using fewer passes over the database than level wise algorithms. However, the dynamic approach is very sensitive to the data distribution of the database and it requires a proper interval size. In this paper an optimization technique named adaptive interval configuration (AIC) has been developed to enhance the dynamic approach. The AIC optimization has the following two functions. The first is that a homogeneous distribution of large itemsets over intervals can be achieved so that less unnecessary candidates could be generated and less database scanning passes are guaranteed. The second is that the near optimal interval size could be determined adaptively to produce the best response time. We also developed a candidate pruning technique named virtual partition pruning to reduce the size 2 candidate set and incorporated it into the AIC optimization. Based on the optimization technique, we proposed the efficient AIC algorithm for mining association rules. The algorithms of AIC, DIC and the classic Apriori were implemented on a Sun Ultra Enterprise 4000 for performance comparison. The results show that the AIC performed much better than both DIC and Apriori, and showed a strong robustness.展开更多
To overcome the failure in eliminating suspicious patterns or association rules existing in traditional association rules mining, we propose a novel method to mine item-item and between-set correlated association rule...To overcome the failure in eliminating suspicious patterns or association rules existing in traditional association rules mining, we propose a novel method to mine item-item and between-set correlated association rules. First, we present three measurements: the association, correlation, and item-set correlation measurements. In the association measurement, the all-confidence measure is used to filter suspicious cross-support patterns, while the all-item-confidence measure is applied in the correlation measurement to eliminate spurious association rules that contain negatively correlated items. Then, we define the item-set correlation measurement and show its corresponding properties. By using this measurement, spurious association rules in which the antecedent and consequent item-sets are negatively correlated can be eliminated. Finally, we propose item-item and between-set correlated association rules and two mining algorithms, I&ISCoMine_AP and I&ISCoMine_CT. Experimental results with synthetic and real retail datasets show that the proposed method is effective and valid.展开更多
With the development of smart agriculture,the accumulation of data in the field of pesticide regulation has a certain scale.The pesticide transaction data collected by the Pesticide National Data Center alone produces...With the development of smart agriculture,the accumulation of data in the field of pesticide regulation has a certain scale.The pesticide transaction data collected by the Pesticide National Data Center alone produces more than 10 million records daily.However,due to the backward technical means,the existing pesticide supervision data lack deep mining and usage.The Apriori algorithm is one of the classic algorithms in association rule mining,but it needs to traverse the transaction database multiple times,which will cause an extra IO burden.Spark is an emerging big data parallel computing framework with advantages such as memory computing and flexible distributed data sets.Compared with the Hadoop MapReduce computing framework,IO performance was greatly improved.Therefore,this paper proposed an improved Apriori algorithm based on Spark framework,ICAMA.The MapReduce process was used to support the candidate set and then to generate the candidate set.After experimental comparison,when the data volume exceeds 250 Mb,the performance of Spark-based Apriori algorithm was 20%higher than that of the traditional Hadoop-based Apriori algorithm,and with the increase of data volume,the performance improvement was more obvious.展开更多
文摘The Apriori algorithm is a classical method of association rules mining.Based on analysis of this theory,the paper provides an improved Apriori algorithm.The paper puts foward with algorithm combines HASH table technique and reduction of candidate item sets to enhance the usage efficiency of resources as well as the individualized service of the data library.
文摘Hotspots (active fires) indicate spatial distribution of fires. A study on determining influence factors for hotspot occurrence is essential so that fire events can be predicted based on characteristics of a certain area. This study discovers the possible influence factors on the occurrence of fire events using the association rule algorithm namely Apriori in the study area of Rokan Hilir Riau Province Indonesia. The Apriori algorithm was applied on a forest fire dataset which containeddata on physical environment (land cover, river, road and city center), socio-economic (income source, population, and number of school), weather (precipitation, wind speed, and screen temperature), and peatlands. The experiment results revealed 324 multidimensional association rules indicating relationships between hotspots occurrence and other factors.The association among hotspots occurrence with other geographical objects was discovered for the minimum support of 10% and the minimum confidence of 80%. The results show that strong relations between hotspots occurrence and influence factors are found for the support about 12.42%, the confidence of 1, and the lift of 2.26. These factors are precipitation greater than or equal to 3 mm/day, wind speed in [1m/s, 2m/s), non peatland area, screen temperature in [297K, 298K), the number of school in 1 km2 less than or equal to 0.1, and the distance of each hotspot to the nearest road less than or equal to 2.5 km.
文摘Maximum frequent pattern generation from a large database of transactions and items for association rule mining is an important research topic in data mining. Association rule mining aims to discover interesting correlations, frequent patterns, associations, or causal structures between items hidden in a large database. By exploiting quantum computing, we propose an efficient quantum search algorithm design to discover the maximum frequent patterns. We modified Grover’s search algorithm so that a subspace of arbitrary symmetric states is used instead of the whole search space. We presented a novel quantum oracle design that employs a quantum counter to count the maximum frequent items and a quantum comparator to check with a minimum support threshold. The proposed derived algorithm increases the rate of the correct solutions since the search is only in a subspace. Furthermore, our algorithm significantly scales and optimizes the required number of qubits in design, which directly reflected positively on the performance. Our proposed design can accommodate more transactions and items and still have a good performance with a small number of qubits.
文摘Data mining techniques offer great opportunities for developing ethics lines whose main aim is to ensure improvements and compliance with the values, conduct and commitments making up the code of ethics. The aim of this study is to suggest a process for exploiting the data generated by the data generated and collected from an ethics line by extracting rules of association and applying the Apriori algorithm. This makes it possible to identify anomalies and behaviour patterns requiring action to review, correct, promote or expand them, as appropriate.
基金Supported by the National Natural Science Foundation of China(60472099)Ningbo Natural Science Foundation(2006A610017)
文摘Because data warehouse is frequently changing, incremental data leads to old knowledge which is mined formerly unavailable. In order to maintain the discovered knowledge and patterns dynamically, this study presents a novel algorithm updating for global frequent patterns-IPARUC. A rapid clustering method is introduced to divide database into n parts in IPARUC firstly, where the data are similar in the same part. Then, the nodes in the tree are adjusted dynamically in inserting process by "pruning and laying back" to keep the frequency descending order so that they can be shared to approaching optimization. Finally local frequent itemsets mined from each local dataset are merged into global frequent itemsets. The results of experimental study are very encouraging. It is obvious from experiment that IPARUC is more effective and efficient than other two contrastive methods. Furthermore, there is significant application potential to a prototype of Web log Analyzer in web usage mining that can help us to discover useful knowledge effectively, even help managers making decision.
文摘ost proposed algorithms for mining association rules follow the conventional level wise approach. The dynamic candidate generation idea introduced in the dynamic itemset counting (DIC) algorithm broke away from the level wise limitation which could find the large itemsets using fewer passes over the database than level wise algorithms. However, the dynamic approach is very sensitive to the data distribution of the database and it requires a proper interval size. In this paper an optimization technique named adaptive interval configuration (AIC) has been developed to enhance the dynamic approach. The AIC optimization has the following two functions. The first is that a homogeneous distribution of large itemsets over intervals can be achieved so that less unnecessary candidates could be generated and less database scanning passes are guaranteed. The second is that the near optimal interval size could be determined adaptively to produce the best response time. We also developed a candidate pruning technique named virtual partition pruning to reduce the size 2 candidate set and incorporated it into the AIC optimization. Based on the optimization technique, we proposed the efficient AIC algorithm for mining association rules. The algorithms of AIC, DIC and the classic Apriori were implemented on a Sun Ultra Enterprise 4000 for performance comparison. The results show that the AIC performed much better than both DIC and Apriori, and showed a strong robustness.
基金Project supported by the National Natural Science Foundation of China (Nos. 10876036 and 70871111)the Ningbo Natural Science Foundation, China (No. 2010A610113)
文摘To overcome the failure in eliminating suspicious patterns or association rules existing in traditional association rules mining, we propose a novel method to mine item-item and between-set correlated association rules. First, we present three measurements: the association, correlation, and item-set correlation measurements. In the association measurement, the all-confidence measure is used to filter suspicious cross-support patterns, while the all-item-confidence measure is applied in the correlation measurement to eliminate spurious association rules that contain negatively correlated items. Then, we define the item-set correlation measurement and show its corresponding properties. By using this measurement, spurious association rules in which the antecedent and consequent item-sets are negatively correlated can be eliminated. Finally, we propose item-item and between-set correlated association rules and two mining algorithms, I&ISCoMine_AP and I&ISCoMine_CT. Experimental results with synthetic and real retail datasets show that the proposed method is effective and valid.
基金supported by National Natural Science Foundation of China(No.61601471)。
文摘With the development of smart agriculture,the accumulation of data in the field of pesticide regulation has a certain scale.The pesticide transaction data collected by the Pesticide National Data Center alone produces more than 10 million records daily.However,due to the backward technical means,the existing pesticide supervision data lack deep mining and usage.The Apriori algorithm is one of the classic algorithms in association rule mining,but it needs to traverse the transaction database multiple times,which will cause an extra IO burden.Spark is an emerging big data parallel computing framework with advantages such as memory computing and flexible distributed data sets.Compared with the Hadoop MapReduce computing framework,IO performance was greatly improved.Therefore,this paper proposed an improved Apriori algorithm based on Spark framework,ICAMA.The MapReduce process was used to support the candidate set and then to generate the candidate set.After experimental comparison,when the data volume exceeds 250 Mb,the performance of Spark-based Apriori algorithm was 20%higher than that of the traditional Hadoop-based Apriori algorithm,and with the increase of data volume,the performance improvement was more obvious.