期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Disbond detection with piezoelectric wafer active sensors in RC structures strengthened with FRP composite overlays 被引量:2
1
作者 Victor Giurgiutiu Kent Harries +2 位作者 Michael Petrou Joel Bost Josh B.Quattlebaum 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2003年第2期213-223,共11页
The capability of embedded piezoelectric wafer active sensors(PWAS)to perform in-situ nondestructive evaluation(NDE)for structural health monitoring(SHM)of reinforced concrete(RC)structures strengthened with fiber rei... The capability of embedded piezoelectric wafer active sensors(PWAS)to perform in-situ nondestructive evaluation(NDE)for structural health monitoring(SHM)of reinforced concrete(RC)structures strengthened with fiber reinforced polymer(FRP)composite overlays is explored.First,the disbond detection method were developed on coupon specimens consisting of concrete blocks covered with an FRP composite layer.It was found that the presence of a disbond crack drastically changes the electromecfianical(E/M)impedance spectrum lneasurcd at the PWAS terlninals.The spectral changes depend on the distance between the PWAS and the crack tip.Second,large scale experiments were conducted on a RC beam strengthened with carbon fiber reinforced polymer(CFRP)composite overlay.The beam was subject to an accelerated fatigue load regime in a three-point bending configuration up to a total of 807,415 cycles.During these fatigue tests,the CFRP overlay experienced disbonding beginning at about 500,000 cycles.The PWAS were able to detect the disbonding before it could be reliably seen by visual inspection.Good correlation between the PWAS readings and the position and extent of disbond damage was observed.These preliminary results demonstrate the potential of PWAS technology for SHM of RC structures strengthened with FRP composite overlays. 展开更多
关键词 frp composite overlays composite strengthening and rehabilitation structural health monitoring piezoelectric wafer active sensors E/M impedance aging infrastructure disbond damage PWAS
下载PDF
An Expert System in FRP Composite Material Design 被引量:2
2
作者 Qingfen LI, Zhaoxia CUI and Weimin WANG College of Mechanical & Electrical Engineering, Harbin Engineering University, Harbin 150001, China Jianhua GAO Department of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第5期556-560,共5页
An expert system prototype for fibre-reinforced plastic matrix (FRP) composite material design, ESFRP, has been developed. The system consists of seven main functional parts: a general inference engine, a set of knowl... An expert system prototype for fibre-reinforced plastic matrix (FRP) composite material design, ESFRP, has been developed. The system consists of seven main functional parts: a general inference engine, a set of knowledge bases, a material properties algorithm base, an explanation engine, various data bases, several function models and the user interface. The ESFRP can simulate human experts to make design scheme for fibre-reinforced plastics design, FRP layered plates design and FRP typical engineering components design. It can also predict the material properties and make strength analysis according to the micro and macro mechanics of composite materials. A satisfied result can be gained through the reiterative design. 展开更多
关键词 An Expert System in frp composite Material Design frp
下载PDF
Structural Performance of Light Weight Multicellular FRP Composite Bridge Deck Using Finite Element Analysis 被引量:1
3
作者 Woraphot Prachasaree Pongsak Sookmanee 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第5期939-943,共5页
Fiber reinforced polymer (FRP) composite materials having advantages such as higher strength to weight than conventional engineering materials, non-corrosiveness and modularization, which should help engineers to ob... Fiber reinforced polymer (FRP) composite materials having advantages such as higher strength to weight than conventional engineering materials, non-corrosiveness and modularization, which should help engineers to obtain more efficient and cost effective structural materials and systems. Currently, FRP composites are becoming more popular in civil engineering applications. The objectives of this research are to study performance and behavior of light weight multi-cellular FRP composite bridge decks (both module and system levels) under various loading conditions through finite element modeling, and to validate analytical response of FRP composite bridge decks with data from laboratory evaluations. The relative deflection, equivalent flexural rigidity, failure load (mode) and load distribution factors (LDF) based on FE results have been compared with experimental data and discussed in detail. The finite element results showing good correlations with experimental data are presented in this work. 展开更多
关键词 fiber reinforced polymer frp composites bridge deck finite element
下载PDF
A shield of defense:Developing ballistic composite panels with effective electromagnetic interference shielding absorption
4
作者 Nisrin Rizek Abdelal 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期123-136,共14页
The primary goal of this study is to develop cost-effective shield materials that offer effective protection against high-velocity ballistic impact and electromagnetic interference(EMI)shielding capabilities through a... The primary goal of this study is to develop cost-effective shield materials that offer effective protection against high-velocity ballistic impact and electromagnetic interference(EMI)shielding capabilities through absorption.Six fiber-reinforced epoxy composite panels,each with a different fabric material and stacking sequence,have been fabricated using a hand-layup vacuum bagging process.Two panels made of Kevlar and glass fibers,referred to as(K-NIJ)and(G-NIJ),have been tested according to the National Institute of Justice ballistic resistance protective materials test NIJ 0108.01 Standard-Level IIIA(9 mm×19 mm FMJ 124 g)test.Three panels,namely,a hybrid of Kevlar and glass(H-S),glass with ceramic particles(C-S),and glass with recycled rubber(R-S)have been impacted by the bullet at the center,while the fourth panel made of glass fiber(G-S)has been impacted at the side.EMI shielding properties have been measured in the X-band frequency range via the reflection-transmission method.Results indicate that four panels(K-NIJ,G-NIJ,H-S,and G-S)are capable of withstanding high-velocity impact by stopping the bullet from penetrating through the panels while maintaining their structural integrity.However,under such conditions,these panels may experience localized delamination with variable severity.The EMI measurements reveal that the highest absorptivity observed is 88% for the KNIJ panel at 10.8 GHz,while all panels maintain an average absorptivity above 65%.All panels act as a lossy medium with a peak absorptivity at different frequencies,with K-NIJ and H-S panels demonstrating the highest absorptivity.In summary,the study results in the development of a novel,costeffective,multifunctional glass fiber epoxy composite that combines ballistic and electromagnetic interference shielding properties.The material has been developed using a simple manufacturing method and exhibits remarkable ballistic protection that outperforms Kevlar in terms of shielding efficiency;no bullet penetration or back face signature is observed,and it also demonstrates high EMI shielding absorption.Overall,the materials developed show great promise for various applications,including the military and defense. 展开更多
关键词 BALLISTIC frp composite EMI shielding ABSORPTIVITY CT-SCAN NIJ test BULLET DEFENSE
下载PDF
Numerical simulation of squat reinforced concrete wall strengthened by FRP composite material 被引量:1
5
作者 Ali KEZMANE Said BOUKAIS Mohand Hamizi 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2016年第4期445-455,共11页
The advanced design rules and the latest known earthquakes, have imposed a strengthening of reinforced concrete structures. Many research works and practical achievements of the application of the external reinforceme... The advanced design rules and the latest known earthquakes, have imposed a strengthening of reinforced concrete structures. Many research works and practical achievements of the application of the external reinforcement by using FRP composite materials have been particularly developed in the recent years. This type of strengthening seems promising for the seismic reinforcement of buildings. Among of the components of structures that could affect the stability of the structure in case of an earthquake is the reinforced concrete walls, which require in many cases a strengthening, especially in case where the diagonal cracks can be developed. The intent of this paper is to present a numerical simulation of squat reinforced concrete wall strengthened by FRP composite material (carbon fiber epoxy). The intent of this study is to perform finite element model to investigate the effects of such reinforcement in the squat reinforced concrete walls. Taking advantage of a commercial finite element package ABAQUS code, three-dimensional numerical simulations were performed, addressing the parameters associated with the squat reinforced concrete walls. An elasto-plastic damage model material is used for concrete, for steel, an elastic-plastic behavior is adopted, and the FRP composite is considered unidirectional and orthotropic. The obtained results in terms of displacements, stresses, damage illustrate clearly the importance of this strengthening strategy. 展开更多
关键词 simulation strengthening reinforced concrete wall squat wall frp composite material DAMAGE ABAQUS
原文传递
Mode-I fracture and durability of FRP-concrete bonded interfaces 被引量:5
6
作者 Qiao Pizhong Xu Yingwu 《Water Science and Engineering》 EI CAS 2008年第4期47-60,共14页
In this study, a work-of-fracture method using a three-point bend beam (3PBB) specimen, which is commonly used to determine the fracture energy of concrete, was adapted to evaluate the mode-I fracture and durability... In this study, a work-of-fracture method using a three-point bend beam (3PBB) specimen, which is commonly used to determine the fracture energy of concrete, was adapted to evaluate the mode-I fracture and durability of fiber-reinforced polymer (FRP) composite-concrete bonded interfaces. Interface fracture properties were evaluated with established data reduction procedures. The proposed test method is primarily for use in evaluating the effects of freeze-thaw (F-T) and wet-dry (W-D) cycles that are the accelerated aging protocols on the mode-I fracture of carbon FRP-concrete bonded interfaces. The results of the mode-I fracture tests of F-T and W-D cycle-conditioned specimens show that both the critical load and fracture energy decrease as the number of cycles increases, and their degradation pattern has a nearly linear relationship with the number of cycles. However, compared with the effect of the F-T cycles, the critical load and fracture energy degrade at a slower rate with W-D cycles, which suggests that F-T cyclic conditioning causes more deterioration of carbon fiber-reinforced polymer (CFRP)-concrete bonded interface. After 50 and 100 conditioning cycles, scaling of concrete was observed in all the specimens subjected to F-T cycles, but not in those subjected to W-D cycles. The examination of interface fracture surfaces along the bonded interfaces with varying numbers of F-T and W-D conditioning cycles shows that (1) cohesive failure of CFRP composites is not observed in all fractured surfaces; (2) for the control specimens that have not been exposed to any conditioning cycles, the majority of interface failure is a result of cohesive fracture of concrete (peeling of concrete from the concrete substrate), which means that the cracks mostly propagate within the concrete; and (3) as the number of F-T or W-D conditioning cycles increases, adhesive failure along the interface begins to emerge and gradually increases. It is thus concluded that the fracture properties (i.e., the critical load and fracture energy) of the bonded interface are controlled primarily by the concrete cohesive fracture before conditioning and by the adhesive interface fracture after many cycles of F-T or W-D conditioning. As demonstrated in this study, a test method using 3PBB specimens combined with a fictitious crack model and experimental conditioning protocols for durability can be used as an effective qualification method to test new hybrid material interface bonds and to evaluate durability-related effects on the interfaces. 展开更多
关键词 repair and strengthening of concrete structures frp composites frp-concrete bonded interface mode-l fracture DURABILITY FREEZE-THAW wet-dry interface energy
下载PDF
Fracture characteristics and ductility of cracked concrete beam post-strengthened with CFRP Sheet 被引量:1
7
作者 易富民 董伟 +1 位作者 赵艳华 吴智敏 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第3期5-10,共6页
The present paper concerns the fracture characteristics and ductility of cracked concrete beam externally bonded with carbon fiber-reinforced polymer (CFRP) sheet as well as the integration behaviors between CFRP/conc... The present paper concerns the fracture characteristics and ductility of cracked concrete beam externally bonded with carbon fiber-reinforced polymer (CFRP) sheet as well as the integration behaviors between CFRP/concrete interfacial debonding and concrete cracking.Three-point bending tests were carried out on the CFRP-strengthened cracked concrete beams with varying specimen depth and initial crack length.A straingauge method was developed to monitor the crack initiation and propagation in concrete,and the CFRP/concrete interfacial bonding behaviors,respectively.Clip gauges were used to measure crack mouth opening displacement (CMOD) and the deflection at midspan.Experimental results revealed that CFRP-strengthened specimen shows a higher load capacity under the same deformation level and a better inelastic deformation capacity compared with the unstrengthened one.For there are two manifest peak values in the obtained load versus displacement curve,the ductility of CFRP-strengthened concrete beams were investigated using index expressed as area ratio on the load versus displacement curve.The calculated results indicated that the contribution from CFRP sheet to the ductility improvement of specimen is notable when the deflection at midspan exceeded 10.5 times the first-crack deflection. 展开更多
关键词 frp composites cracked concrete beam fracture characteristics DUCTILITY
下载PDF
Analytical and Numerical Modelling of FRP Debonding from Concrete Substrate under Pure Shearing
8
作者 PAN Jinlong XU Zhun +1 位作者 C K Y Leung LI Zongjin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第1期142-148,共7页
External bonding of fiber reinforced polymer (FRP) composites on the concrete structures has been proved to be an effective and efficient way to strengthen concrete structures. For a FRP strengthened concrete beam, ... External bonding of fiber reinforced polymer (FRP) composites on the concrete structures has been proved to be an effective and efficient way to strengthen concrete structures. For a FRP strengthened concrete beam, it is usually observed that the failure occurs in the concrete and a thin layer of concrete is attached on the surface of the debonded FRP plate. To study the debond behavior between concrete and FRP composites, an analytical model based on the three-parameter model is developed to study the debonding behavior for the FRP-to-concrete joint under pure shearing. Then, nonlinear FEM analysis is conducted to verify the PrOposed analytical model. The FEM results shows good agreement with the results from the model. Finally, with the analytical model, sensitivity analyses are performed to study the effect of the interracial parameters or the ~eometric parameters on the debondin~ behavior. 展开更多
关键词 frp composites debonding behavior analytical model nonlinear FEM analysis
下载PDF
ANALYTICAL ANALYSIS OF INTERFACIAL STRESSES IN FRP-RC HYBRID BEAMS WITH TIME-DEPENDENT DEFORMATIONS OF RC BEAM 被引量:2
9
作者 Bouazza Fahsi Kouider Halim Benrahou +3 位作者 Baghdad Krour Abdeloauhed Tounsi Samir Benyoucef1 E Abbas Adda Bedia 《Acta Mechanica Solida Sinica》 SCIE EI 2011年第6期519-526,共8页
In this paper, the effect of time-dependent deformations (such as shrinkage and creep) on the interracial stresses between an RC beam and FRP plate is presented. For this end, a closed-form solution for such stresse... In this paper, the effect of time-dependent deformations (such as shrinkage and creep) on the interracial stresses between an RC beam and FRP plate is presented. For this end, a closed-form solution for such stresses in externally FRP plated RC beams including creep and shrinkage effects is presented. The developed model is formulated to predict the interfacial stresses at time 't', in which the RC beams have been already subjected to creep and shrinkage effects. The adherend shear deformations have been included in the present theoretical analysis by assuming a parabolic shear stress through the thickness of the RC beam and the FRP panel. Contrary to some existing studies, the assumption that both RC beam and FRP panel have the same curvature is not used in the present investigation. This research is helpful for the understanding on mechanical behavior of the interface and design of the FRP-RC hybrid structures. 展开更多
关键词 hybrid structure RC beams frp composites interfacial stresses CREEP SHRINKAGE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部