An expert system prototype for fibre-reinforced plastic matrix (FRP) composite material design, ESFRP, has been developed. The system consists of seven main functional parts: a general inference engine, a set of knowl...An expert system prototype for fibre-reinforced plastic matrix (FRP) composite material design, ESFRP, has been developed. The system consists of seven main functional parts: a general inference engine, a set of knowledge bases, a material properties algorithm base, an explanation engine, various data bases, several function models and the user interface. The ESFRP can simulate human experts to make design scheme for fibre-reinforced plastics design, FRP layered plates design and FRP typical engineering components design. It can also predict the material properties and make strength analysis according to the micro and macro mechanics of composite materials. A satisfied result can be gained through the reiterative design.展开更多
The advanced design rules and the latest known earthquakes, have imposed a strengthening of reinforced concrete structures. Many research works and practical achievements of the application of the external reinforceme...The advanced design rules and the latest known earthquakes, have imposed a strengthening of reinforced concrete structures. Many research works and practical achievements of the application of the external reinforcement by using FRP composite materials have been particularly developed in the recent years. This type of strengthening seems promising for the seismic reinforcement of buildings. Among of the components of structures that could affect the stability of the structure in case of an earthquake is the reinforced concrete walls, which require in many cases a strengthening, especially in case where the diagonal cracks can be developed. The intent of this paper is to present a numerical simulation of squat reinforced concrete wall strengthened by FRP composite material (carbon fiber epoxy). The intent of this study is to perform finite element model to investigate the effects of such reinforcement in the squat reinforced concrete walls. Taking advantage of a commercial finite element package ABAQUS code, three-dimensional numerical simulations were performed, addressing the parameters associated with the squat reinforced concrete walls. An elasto-plastic damage model material is used for concrete, for steel, an elastic-plastic behavior is adopted, and the FRP composite is considered unidirectional and orthotropic. The obtained results in terms of displacements, stresses, damage illustrate clearly the importance of this strengthening strategy.展开更多
基金The work is funded by Heilongjiang Natural Science Foundation of China(No.E9803).
文摘An expert system prototype for fibre-reinforced plastic matrix (FRP) composite material design, ESFRP, has been developed. The system consists of seven main functional parts: a general inference engine, a set of knowledge bases, a material properties algorithm base, an explanation engine, various data bases, several function models and the user interface. The ESFRP can simulate human experts to make design scheme for fibre-reinforced plastics design, FRP layered plates design and FRP typical engineering components design. It can also predict the material properties and make strength analysis according to the micro and macro mechanics of composite materials. A satisfied result can be gained through the reiterative design.
文摘The advanced design rules and the latest known earthquakes, have imposed a strengthening of reinforced concrete structures. Many research works and practical achievements of the application of the external reinforcement by using FRP composite materials have been particularly developed in the recent years. This type of strengthening seems promising for the seismic reinforcement of buildings. Among of the components of structures that could affect the stability of the structure in case of an earthquake is the reinforced concrete walls, which require in many cases a strengthening, especially in case where the diagonal cracks can be developed. The intent of this paper is to present a numerical simulation of squat reinforced concrete wall strengthened by FRP composite material (carbon fiber epoxy). The intent of this study is to perform finite element model to investigate the effects of such reinforcement in the squat reinforced concrete walls. Taking advantage of a commercial finite element package ABAQUS code, three-dimensional numerical simulations were performed, addressing the parameters associated with the squat reinforced concrete walls. An elasto-plastic damage model material is used for concrete, for steel, an elastic-plastic behavior is adopted, and the FRP composite is considered unidirectional and orthotropic. The obtained results in terms of displacements, stresses, damage illustrate clearly the importance of this strengthening strategy.