This paper presents a wideband frequency-shift keying (FSK) demodulator suitable for a digital data transmission chain of wireless neural stimulation microsystems such as cochlear implants and retinal prostheses. Th...This paper presents a wideband frequency-shift keying (FSK) demodulator suitable for a digital data transmission chain of wireless neural stimulation microsystems such as cochlear implants and retinal prostheses. The demodulator circuit derives a constant frequency clock directly from an FSK carrier, and uses this clock to sample the data bits. The circuit occupies 0.03 mm^2 using a 0.6 μm, 2M/2P, standard CMOS process, and consumes 0.25 mW at 5 V. This circuit was experimentally tested at transmission speed of up to 2.5 Mbps while receiving a 5-10 MHz FSK carrier signal in a cochlear implant system.展开更多
A parameter estimation approach of reconnaissance hybrid radar signal combined frequency-shift keying (FSK) and phase-shift keying (PSK) is presented. Firstly, the multi-phase difference is adopted to calculate th...A parameter estimation approach of reconnaissance hybrid radar signal combined frequency-shift keying (FSK) and phase-shift keying (PSK) is presented. Firstly, the multi-phase difference is adopted to calculate the instantaneous frequency (IF) of FSK/PSK, then the frequency points of FSK are estimated from the histogram of IF. The code rate of PSK is extracted from the locations of phase discontinuity. Finally, the multi-phase difference of the square of the received signal is computed to estimate the code rate of FSK. The presented algorithm has higher accuracy of parameter estimation when the signal-to-noise ratio (SNR) is above 11 dB.展开更多
This paper presents a human body communication(HBC)transceiver for wireless body network applications.The transceiver employs on frequency shift keying(FSK)modulation and op-erates in 40 MHz-60 MHz which is the resona...This paper presents a human body communication(HBC)transceiver for wireless body network applications.The transceiver employs on frequency shift keying(FSK)modulation and op-erates in 40 MHz-60 MHz which is the resonant frequency of the human body as an antenna.It achieves high performance and stability through establish passive microstrip line and via models and active device-models.The proposed transceiver is designed and fabricated by FR4 printed cir-cuit board(PCB)process,the transceiver has the ability of configurable data rate up to 2 Mbps and it achieves-86 dBm receiving sensitivity at 2 Mbps data rate.Meanwhile,the transceiver out-put power dynamics range is 34 dB.Furthermore,with a visual interaction interface,the transceiv-er can be agility use in a variety of scenarios.Its measurements are verified on human body.The result shows that the transceiver has ability to send data from person to person by relying on hu-man body antenna radiation.The transceiver shows great prospect in wireless body area networks(WBAN)for telemedicine and emergency communication.展开更多
基金Project supported by the National Basic Research Program (973) of China (No. G2000036508) and the National Natural Science Foun-dation of China (No. 60475018)
文摘This paper presents a wideband frequency-shift keying (FSK) demodulator suitable for a digital data transmission chain of wireless neural stimulation microsystems such as cochlear implants and retinal prostheses. The demodulator circuit derives a constant frequency clock directly from an FSK carrier, and uses this clock to sample the data bits. The circuit occupies 0.03 mm^2 using a 0.6 μm, 2M/2P, standard CMOS process, and consumes 0.25 mW at 5 V. This circuit was experimentally tested at transmission speed of up to 2.5 Mbps while receiving a 5-10 MHz FSK carrier signal in a cochlear implant system.
基金supported by the National Defense Preresearch Fund of China under Grant No. 41101030401
文摘A parameter estimation approach of reconnaissance hybrid radar signal combined frequency-shift keying (FSK) and phase-shift keying (PSK) is presented. Firstly, the multi-phase difference is adopted to calculate the instantaneous frequency (IF) of FSK/PSK, then the frequency points of FSK are estimated from the histogram of IF. The code rate of PSK is extracted from the locations of phase discontinuity. Finally, the multi-phase difference of the square of the received signal is computed to estimate the code rate of FSK. The presented algorithm has higher accuracy of parameter estimation when the signal-to-noise ratio (SNR) is above 11 dB.
基金the National Key R&D Program of China(No.2018YFC2001002)the National Natural Sci-ence Foundation of China(No.62173318)+1 种基金Shenzhen Basic Research Project(No.JCYJ20180507182231907,PIFI 2020 FYB0001)CAS Key Lab of Health Informatics.
文摘This paper presents a human body communication(HBC)transceiver for wireless body network applications.The transceiver employs on frequency shift keying(FSK)modulation and op-erates in 40 MHz-60 MHz which is the resonant frequency of the human body as an antenna.It achieves high performance and stability through establish passive microstrip line and via models and active device-models.The proposed transceiver is designed and fabricated by FR4 printed cir-cuit board(PCB)process,the transceiver has the ability of configurable data rate up to 2 Mbps and it achieves-86 dBm receiving sensitivity at 2 Mbps data rate.Meanwhile,the transceiver out-put power dynamics range is 34 dB.Furthermore,with a visual interaction interface,the transceiv-er can be agility use in a variety of scenarios.Its measurements are verified on human body.The result shows that the transceiver has ability to send data from person to person by relying on hu-man body antenna radiation.The transceiver shows great prospect in wireless body area networks(WBAN)for telemedicine and emergency communication.