Chinese FengYun-2C(FY-2C) satellite data were combined into the Local Analysis and Prediction System(LAPS) model to obtain three-dimensional cloud parameters and rain content. These parameters analyzed by LAPS were us...Chinese FengYun-2C(FY-2C) satellite data were combined into the Local Analysis and Prediction System(LAPS) model to obtain three-dimensional cloud parameters and rain content. These parameters analyzed by LAPS were used to initialize the Global/Regional Assimilation and Prediction System model(GRAPES) in China to predict precipitation in a rainstorm case in the country. Three prediction experiments were conducted and were used to investigate the impacts of FY-2C satellite data on cloud analysis of LAPS and on short range precipitation forecasts. In the first experiment, the initial cloud fields was zero value. In the second, the initial cloud fields were cloud liquid water, cloud ice, and rain content derived from LAPS without combining the satellite data. In the third experiment, the initial cloud fields were cloud liquid water, cloud ice, and rain content derived from LAPS including satellite data. The results indicated that the FY-2C satellite data combination in LAPS can show more realistic cloud distributions, and the model simulation for precipitation in 1–6 h had certain improvements over that when satellite data and complex cloud analysis were not applied.展开更多
The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera...The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera equipped on the GF-7 laser altimetry system can capture the energy distribution at the time of laser emission and the image of the ground object where the laser falls,which can be used to judge whether the laser is affected by the cloud.At the same time,the centroid of laser spot on the footprint image can be extracted to monitor the change of laser pointing stability.In this manuscript,a data quality analysis scheme of laser altimetry based on footprint image is presented.Firstly,the cloud detection of footprint image is realized based on deep learning.The fusion result of the model is about 5%better than that of the traditional cloud detection algorithm,which can quickly and accurately determine whether the laser spot is affected by cloud.Secondly,according to the characteristics of footprint image,a threshold constrained ellipse fitting method for extracting the centroid of laser spot is proposed to monitor the pointing stability of long-period lasers.Based on the above method,the change of laser spot centroid since GF-7 satellite was put into operation is analyzed,and the conclusions obtained have certain reference significance for the quality control of satellite laser altimetry data and the analysis of pointing angle stability.展开更多
In this paper,the clustering analysis is applied to the satellite image segmentation,and a cloud-based thunderstorm cloud recognition method is proposed in combination with the strong cloud computing power.The method ...In this paper,the clustering analysis is applied to the satellite image segmentation,and a cloud-based thunderstorm cloud recognition method is proposed in combination with the strong cloud computing power.The method firstly adopts the fuzzy C-means clustering(FCM)to obtain the satellite cloud image segmentation.Secondly,in the cloud image,we dispose the‘high-density connected’pixels in the same cloud clusters and the‘low-density connected’pixels in different cloud clusters.Therefore,we apply the DBSCAN algorithm to the cloud image obtained in the first step to realize cloud cluster knowledge.Finally,using the method of spectral threshold recognition and texture feature recognition in the steps of cloud clusters,thunderstorm cloud clusters are quickly and accurately identified.The experimental results show that cluster analysis has high research and application value in the segmentation processing of meteorological satellite cloud images.展开更多
基金supported by the National Natural Science Foundation of China (41375025, 41275114, and 41275039)the National High Technology Research and Development Program of China (863 Program, 2012AA120903)+1 种基金the Public Benefit Research Foundation of the China Meteorological Administration (GYHY201106044 and GYHY201406001)the China Meteorological Administration Torrential Flood Project
文摘Chinese FengYun-2C(FY-2C) satellite data were combined into the Local Analysis and Prediction System(LAPS) model to obtain three-dimensional cloud parameters and rain content. These parameters analyzed by LAPS were used to initialize the Global/Regional Assimilation and Prediction System model(GRAPES) in China to predict precipitation in a rainstorm case in the country. Three prediction experiments were conducted and were used to investigate the impacts of FY-2C satellite data on cloud analysis of LAPS and on short range precipitation forecasts. In the first experiment, the initial cloud fields was zero value. In the second, the initial cloud fields were cloud liquid water, cloud ice, and rain content derived from LAPS without combining the satellite data. In the third experiment, the initial cloud fields were cloud liquid water, cloud ice, and rain content derived from LAPS including satellite data. The results indicated that the FY-2C satellite data combination in LAPS can show more realistic cloud distributions, and the model simulation for precipitation in 1–6 h had certain improvements over that when satellite data and complex cloud analysis were not applied.
基金National Nature Science Foundation(Nos.41971425,41601505)Special Fund for High Resolution Images Surveying and Mapping Application System(No.42-Y30B04-9001-19/21)。
文摘The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera equipped on the GF-7 laser altimetry system can capture the energy distribution at the time of laser emission and the image of the ground object where the laser falls,which can be used to judge whether the laser is affected by the cloud.At the same time,the centroid of laser spot on the footprint image can be extracted to monitor the change of laser pointing stability.In this manuscript,a data quality analysis scheme of laser altimetry based on footprint image is presented.Firstly,the cloud detection of footprint image is realized based on deep learning.The fusion result of the model is about 5%better than that of the traditional cloud detection algorithm,which can quickly and accurately determine whether the laser spot is affected by cloud.Secondly,according to the characteristics of footprint image,a threshold constrained ellipse fitting method for extracting the centroid of laser spot is proposed to monitor the pointing stability of long-period lasers.Based on the above method,the change of laser spot centroid since GF-7 satellite was put into operation is analyzed,and the conclusions obtained have certain reference significance for the quality control of satellite laser altimetry data and the analysis of pointing angle stability.
基金This work was supported in part by the National Natural Science Foundation of China(51679105,61672261,51409117)Jilin Province Department of Education Thirteen Five science and technology research projects[2016]No.432,[2017]No.JJKH20170804KJ.
文摘In this paper,the clustering analysis is applied to the satellite image segmentation,and a cloud-based thunderstorm cloud recognition method is proposed in combination with the strong cloud computing power.The method firstly adopts the fuzzy C-means clustering(FCM)to obtain the satellite cloud image segmentation.Secondly,in the cloud image,we dispose the‘high-density connected’pixels in the same cloud clusters and the‘low-density connected’pixels in different cloud clusters.Therefore,we apply the DBSCAN algorithm to the cloud image obtained in the first step to realize cloud cluster knowledge.Finally,using the method of spectral threshold recognition and texture feature recognition in the steps of cloud clusters,thunderstorm cloud clusters are quickly and accurately identified.The experimental results show that cluster analysis has high research and application value in the segmentation processing of meteorological satellite cloud images.