期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Electromagnetic Transmission Characteristics of Y-Shaped and Y-Ring-Shaped Frequency Selective Fabrics 被引量:1
1
作者 关福旺 李丹 +1 位作者 杨竹丽 邱夷平 《Journal of Donghua University(English Edition)》 CAS 2022年第5期413-420,共8页
Asymmetrical Y-shaped and Y-ring-shaped frequency selective fabrics(FSFs) were proposed in this paper. They were prepared by computer engraving technology and tested in the anechoic chamber by using the free-space met... Asymmetrical Y-shaped and Y-ring-shaped frequency selective fabrics(FSFs) were proposed in this paper. They were prepared by computer engraving technology and tested in the anechoic chamber by using the free-space method. The test results of representative samples show that the resonance frequencies and the resonance peak or valley values in two polarization modes are not completely identical but the differentials are small, indicating that the influences of polarization modes are not significant. The transmission coefficient curves of Y-shaped and Y-ring-shaped FSFs with various size parameters are obviously different. For instance, as the unit size D increases by 4.0 mm, the resonance frequencies of patch FSFs decrease by 1.92 GHz and the resonance valleys increase by 12.32 dB. Different size parameters have dissimilar effects on the transmission characteristics and the corresponding influence laws should be analyzed concretely. The work could provide reference for the structural design and characteristics analysis of other FSFs. 展开更多
关键词 electromagnetic transmission frequency selective fabric(FSF) computer engraving technology transmission coefficient anechoic chamber
下载PDF
Selective Area Growth and Characterization of GaN Nanorods Fabricated by Adjusting the Hydrogen Flow Rate and Growth Temperature with Metal Organic Chemical Vapor Deposition 被引量:1
2
作者 任鹏 韩刚 +6 位作者 付丙磊 薛斌 张宁 刘喆 赵丽霞 王军喜 李晋闽 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第6期145-149,共5页
CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposit... CaN nanorods are successfully fabricated by adjusting the flow rate ratio of hydrogen (H2)/nitrogen (N2) and growth temperature of the selective area growth (SAG) method with metal organic chemical vapor deposition (MOCVD). The SAG template is obtained by nanospherical-lens photolithography. It is found that increasing the flow rate of 1-12 will change the CaN crystal shape from pyramid to vertical rod, while increasing the growth temperature will reduce the diameters of GaN rods to nanometer scale. Finally the CaN nanorods with smooth lateral surface and relatively good quality are obtained under the condition that the H2:N2 ratio is 1:1 and the growth temperature is 1030℃. The good crystal quality and orientation of GaN nanorods are confirmed by high resolution transmission electron microscopy. The cathodoluminescence spectrum suggests that the crystal and optical quality is also improved with increasing the temperature. 展开更多
关键词 of or IS as RATE GAN Selective Area Growth and Characterization of GaN Nanorods fabricated by Adjusting the Hydrogen Flow Rate and Growth Temperature with Metal Organic Chemical Vapor Deposition by with
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部