Inactive elemental doping is commonly used to improve the structural stability of high-voltage layered transition-metal oxide cathodes.However,the one-step co-doping strategy usually results in small grain size since ...Inactive elemental doping is commonly used to improve the structural stability of high-voltage layered transition-metal oxide cathodes.However,the one-step co-doping strategy usually results in small grain size since the low diffusivity ions such as Ti^(4+)will be concentrated on grain boundaries,which hinders the grain growth.In order to synthesize large single-crystal layered oxide cathodes,considering the different diffusivities of different dopant ions,we propose a simple two-step multi-element co-doping strategy to fabricate core–shell structured LiCoO_(2)(CS-LCO).In the current work,the high-diffusivity Al^(3+)/Mg^(2+)ions occupy the core of single-crystal grain while the low diffusivity Ti^(4+)ions enrich the shell layer.The Ti^(4+)-enriched shell layer(~12 nm)with Co/Ti substitution and stronger Ti–O bond gives rise to less oxygen ligand holes.In-situ XRD demonstrates the constrained contraction of c-axis lattice parameter and mitigated structural distortion.Under a high upper cut-off voltage of 4.6 V,the single-crystal CS-LCO maintains a reversible capacity of 159.8 mAh g^(−1)with a good retention of~89%after 300 cycles,and reaches a high specific capacity of 163.8 mAh g^(−1)at 5C.The proposed strategy can be extended to other pairs of low-(Zr^(4+),Ta^(5+),and W6+,etc.)and high-diffusivity cations(Zn^(2+),Ni^(2+),and Fe^(3+),etc.)for rational design of advanced layered oxide core–shell structured cathodes for lithium-ion batteries.展开更多
In recent years,a new class of metallic materials featuring heterogeneous structures has emerged.These materials consist of distinct soft and hard domains with significant differences in mechanical properties,allowing...In recent years,a new class of metallic materials featuring heterogeneous structures has emerged.These materials consist of distinct soft and hard domains with significant differences in mechanical properties,allowing them to maintain high strength while offering superior ductility.Magnesium(Mg)alloys,renowned for their low density,high specific strength,exceptional vibration damping,and electromagnetic shielding properties,exhibit tremendous potential as lightweight and functional materials.Despite their advantageous properties,high-strength Mg alloys often suffer from limited ductility.However,the emergence of heterogeneous materials provides a fresh perspective for the development of Mg alloys with both high strength and ductility.This article provided a fundamental overview of heterostructured materials and systematically reviewed the recent research progress in the design of Mg alloys with strength-ductility balance based on heterostructure principles.The review encompassed various aspects,including preparation methods,formation mechanisms of diverse heterostructures,and mechanical properties,both within domestic and international contexts.On this basis,the article discussed the challenges encountered in the design and fabrication of heterostructured Mg alloys,as well as the urgent issues that require attention and resolution in the future.展开更多
In this paper, we discuss the optimal insurance in the presence of background risk while the insured is ambiguity averse and there exists belief heterogeneity between the insured and the insurer. We give the optimal i...In this paper, we discuss the optimal insurance in the presence of background risk while the insured is ambiguity averse and there exists belief heterogeneity between the insured and the insurer. We give the optimal insurance contract when maxing the insured’s expected utility of his/her remaining wealth under the smooth ambiguity model and the heterogeneous belief form satisfying the MHR condition. We calculate the insurance premium by using generalized Wang’s premium and also introduce a series of stochastic orders proposed by [1] to describe the relationships among the insurable risk, background risk and ambiguity parameter. We obtain the deductible insurance is the optimal insurance while they meet specific dependence structures.展开更多
Heterogeneous-structured Cu samples composed of coarse-grained(CG) and ultrafine-grained(UFG) domains with a transitional interface were fabricated by friction stir processing, in order to investigate the effect of in...Heterogeneous-structured Cu samples composed of coarse-grained(CG) and ultrafine-grained(UFG) domains with a transitional interface were fabricated by friction stir processing, in order to investigate the effect of interface constraint on the yielding and fracture behaviors. Tensile test revealed that the synergetic strengthening induced by elastic/plastic interaction between incompatible domains increases with increasing the area of constraint interface. The strain distribution near interface and the fracture morphology were characterized using digital image correlation technique and scanning electron microscopy, respectively. Fracture dimples preferentially formed at the interface, possibly due to extremely high triaxial stress and strain accumulation near the interface. Surprisingly, the CG domain was fractured by pure shear instead of the expected voids growth caused by tensile stress.展开更多
In order to mimic the natural heterogeneity of native tissue and provide a better microenvironment for cell culturing,multi-material bioprinting has become a common solution to construct tissue models in vitro.With th...In order to mimic the natural heterogeneity of native tissue and provide a better microenvironment for cell culturing,multi-material bioprinting has become a common solution to construct tissue models in vitro.With the embedded printing method,complex 3D structure can be printed using soft biomaterials with reasonable shape fidelity.However,the current sequential multi-material embedded printing method faces a major challenge,which is the inevitable trade-off between the printed structural integrity and printing precision.Here,we propose a simultaneous multi-material embedded printing method.With this method,we can easily print firmly attached and high-precision multilayer structures.With multiple individually controlled nozzles,different biomaterials can be precisely deposited into a single crevasse,minimizing uncontrolled squeezing and guarantees no contamination of embedding medium within the structure.We analyse the dynamics of the extruded bioink in the embedding medium both analytically and experimentally,and quantitatively evaluate the effects of printing parameters including printing speed and rheology of embedding medium,on the 3D morphology of the printed filament.We demonstrate the printing of double-layer thin-walled structures,each layer less than 200μm,as well as intestine and liver models with 5%gelatin methacryloyl that are crosslinked and extracted from the embedding medium without significant impairment or delamination.The peeling test further proves that the proposed method offers better structural integrity than conventional sequential printing methods.The proposed simultaneous multi-material embedded printing method can serve as a powerful tool to support the complex heterogeneous structure fabrication and open unique prospects for personalized medicine.展开更多
We produced a 316 L stainless steel with heterogeneous nanometer-thick lamellar structures by severe cold-rolling at room temperature,and conducted micro-scale tensile tests in different orientations to evaluate both ...We produced a 316 L stainless steel with heterogeneous nanometer-thick lamellar structures by severe cold-rolling at room temperature,and conducted micro-scale tensile tests in different orientations to evaluate both the inplane(parallel to the nano-lamellae)and out-of-plane(normal and 45inclined to the nano-lamellae)mechanical anisotropy.The parallel orientation demonstrates the greatest tensile strength while the inclined orientation exhibits the least strength.The tensile tests in normal and inclined directions also indicate significant transient elastic-plastic response due to the strain path change.Fractographic examination demonstrates that the specimen fails in the normal direction by premature micro-void nucleation and growth,which restricts its tensile strength;however,we identified zig-zag cracking associated with lamellar shear cracking in the inclined direction.展开更多
The influence of extrusion temperature on microstructure and mechanical properties of heterogeneous Mg−1Gd/Mg−13Gd laminate prepared by accumulated extrusion bonding was investigated.The results reveal that the Mg−1Gd...The influence of extrusion temperature on microstructure and mechanical properties of heterogeneous Mg−1Gd/Mg−13Gd laminate prepared by accumulated extrusion bonding was investigated.The results reveal that the Mg−1Gd/Mg−13Gd laminate forms a significant difference in grain size between the successive layers when extruded at 330℃,and this difference gradually disappears as the extrusion temperature increases from 380 to 430℃.Besides,the growth rate of recrystallized grains in fine-grained layers is faster than that in coarse-grained layers.Moreover,the diffusion ability of Gd element increases with elevating extrusion temperatures,promoting the increase and coarsening of precipitates in fine-grained layers.Tensile tests indicate that the sample extruded at 380℃ has a superior combination of strength and ductility.This is mainly attributed to the synergy of the heterogeneous texture between coarse and fine-grained layers,hetero-deformation induced strengthening and hardening.The fine-grained layers facilitate the activation of prismaticáañslips,while coarse-grained layers make it easier to active basaláañand pyramidalác+añslips,especially for the sample extruded at 380℃.The activation of pyramidalác+añslips contributes to coordinating further plastic deformation.展开更多
Heterogeneous nuclear ribonucleoprotein (hnRNP) C plays a key role in RNA processing but also exerts a dominant negative effect on responses to 1,25-dihydroxyvitamin D (1,25(OH)2D) by functioning as a vitamin D ...Heterogeneous nuclear ribonucleoprotein (hnRNP) C plays a key role in RNA processing but also exerts a dominant negative effect on responses to 1,25-dihydroxyvitamin D (1,25(OH)2D) by functioning as a vitamin D response element-binding protein (VDRE-BP). hnRNPC acts a tetramer of hnRNPC1 (huC1) and hnRNPC2 (huC2), and organization of these subunits is critical to in vivo nucleic acid-binding. Overexpression of either huC1 or huC2 in human osteoblasts is sufficient to confer VDRE-BP suppression of 1,25(OH)2D-mediated transcription. However, huC1 or huC2 alone did not suppress 1,25(OH)2D-induced transcription in mouse osteoblastic cells. By contrast, overexpression of huC1 and huC2 in combination or transfection with a bone-specific polycistronic vector using a "self-cleaving" 2A peptide to co-express huC1/C2 suppressed 1,25D-mediated induction of osteoblast target gene expression. Structural diversity of hnRNPC between human/NWPs and mouse/rat/rabbit/dog was investigated by analysis of sequence variations within the hnRNP CLZ domain. The predicted loss of distal helical function in hnRNPC from lower species provides an explanation for the altered interaction between huC1/C2 and their mouse counterparts. These data provide new evidence of a role for hnRNPC1/C2 in 1,25(OH)2D-driven gene expression, and further suggest that species-specific tetramerization is a crucial determinant of its actions as a regulator of VDR-directed transactivation.展开更多
The graded multiweb structure of heterogeneous anisotropic materials, which makes full use of the continuous, gradual and changing physical mechanical performance of material properties, has a widespread application i...The graded multiweb structure of heterogeneous anisotropic materials, which makes full use of the continuous, gradual and changing physical mechanical performance of material properties, has a widespread application in aeroplane aerofoil structure and automobile lightweight structure. On the basis of laminate buckling theory, the equivalent rigidity method is adopted to establish the corresponding constitutive relation and the non-linear buckling governing equation for the graded multiweb structure. In finding the solution, the critical load of buckling under different complicated boundary conditions together with combined loads were obtained and testification of the experimental analysis shows that the calculation results can satisfy the requirements of engineering design in a satisfactory way. Results obtained from the research say that: graded materials can reduce the concentrated stress on the interface in an effective way and weaken the effect of initial defect in materials and thereby improve the strength and toughness of materials.展开更多
Heterogeneity of biological samples is usually considered a major obstacle for three-dimensional (3D) structure determination of macromolecular complexes. Heterogeneity may occur at the level of composition or conform...Heterogeneity of biological samples is usually considered a major obstacle for three-dimensional (3D) structure determination of macromolecular complexes. Heterogeneity may occur at the level of composition or conformational variability of complexes and affects most 3D structure determination methods that rely on signal averaging. Here, an approach is described that allows sorting structural states based on a 3D statistical approach, the 3D sampling and classification (3D-SC) of 3D structures derived from single particles imaged by cryo electron microscopy (cryo-EM). The method is based on jackknifing & bootstrapping of 3D sub-ensembles and 3D multivariate statistical analysis followed by 3D classification. The robustness of the statistical sorting procedure is corroborated using model data from an RNA polymerase structure and experimental data from a ribosome complex. It allows resolving multiple states within heterogeneous complexes that thus become amendable for a structural analysis despite of their highly flexible nature. The method has important implications for high-resolution structural studies and allows describing structure ensembles to provide insights into the dynamics of multi-component macromolecular assemblies.展开更多
Micro-heterogeneity is an integral parameter of the pore structure of shale gas reservoir and it forms an essential basis for setting and adjusting development parameters.In this study,scanning electron microscopy,hig...Micro-heterogeneity is an integral parameter of the pore structure of shale gas reservoir and it forms an essential basis for setting and adjusting development parameters.In this study,scanning electron microscopy,high-pressure mercury intrusion and low-temperature nitrogen adsorption experiments were used to qualitatively and quantitatively characterize the pore structure of black shale from the third member of the Xiamaling Formation in the Yanshan area.The pore heterogeneity was studied using fractal theory,and the controlling factors of pore development and heterogeneity were evaluated in combination with geochemical parameters,mineral composition,and geological evolution history.The results show that the pore structure of the reservoir was intricate and complicated.Moreover,various types of micro-nano scale pores such as dissolution pores,intergranular pores,interlayer pores,and micro-cracks are well developed in member 3 of the Xiamaling Formation.The average porosity was found to be 6.30%,and the mean value of the average pore size was 4.78 nm.Micropores and transition pores provided most of the storage space.Pore development was significantly affected by the region and was mainly related to the total organic carbon content,vitrinite reflectance and mineral composition.The fractal dimension,which characterizes the heterogeneity,is 2.66 on average,indicating that the pore structure is highly heterogeneous.Fractal dimension is positively correlated with maturity and clay mineral content,while it is negatively correlated with brittle mineral content and average pore size.These results indicate that pore heterogeneity is closely related to thermal history and material composition.Combined with the geological background of this area,it was found that the pore heterogeneity was mainly controlled by the Jurassic magmatism.The more intense the magma intrusion,the stronger the pore heterogeneity.The pore structure and its heterogeneity characteristics present today are a general reflection of the superimposed geological processes of sedimentary-diagenetic-late transformation.The influence of magmatic intrusion on the reservoir is the main geological factor that should be considered for detailed evaluation of the Xiamaling Formation shale gas reservoir in the Yanshan area.展开更多
Fine characterization of pore systems and heterogeneity of shale reservoirs are significant contents of shale gas reservoir physical property research. The research on micro-control factors of low productivity in the ...Fine characterization of pore systems and heterogeneity of shale reservoirs are significant contents of shale gas reservoir physical property research. The research on micro-control factors of low productivity in the Qiongzhusi Formation(Fm.) is still controversial. The lower Cambrian Qiongzhusi Fm. in the Qujing, Yunnan was taken as the object to investigate the influence of mineral compositions on the physical properties of the reservoir and the heterogeneity of shale, using the algorithm to improve the characterization ability of Atomic Force Microscopy(AFM). The results showed that:(1) The pores are mainly wedge-shaped pores and V-shaped pores. The pore diameter of the main pore segment ranges from 5 to 10 nm. Mesopores are mainly developed in the Qiongzhusi Fm. shale in Well QD1, with the average pore diameter of 6.08 nm.(2) Microscopic pore structure and shale surface properties show strong heterogeneity, which complicates the micro-migration of shale gas and increases the difficulty of identifying high-quality reservoirs.(3) The increase of clay mineral content intensifies the compaction and then destroys the pores. Conversely, brittle minerals can protect pores. The support and protection of brittle minerals to pores space depend on their content, mechanical properties and diagenesis.(4)Compression damage to pores, large microscopic roughness and surface fluctuations and strong pore structure heterogeneity are the reasons for the poor gas storage capacity of the Qiongzhusi Fm., which will lead to poor productivity in the Qiongzhusi Fm.展开更多
In the analysis of how environmental regulation affects the comparative advantage of trade,existing literature ignores industry's inherent heterogeneity, which draws remarkably different conclusions. In view of th...In the analysis of how environmental regulation affects the comparative advantage of trade,existing literature ignores industry's inherent heterogeneity, which draws remarkably different conclusions. In view of this, the paper analyzed the mechanism of environmental regulation on the export quality of different industries from the perspective of factor input structure heterogeneity. Based on the panel data of China's manufacturing industry, the paper used the system generalized method of moments method to examine the heterogeneity influence of environmental regulation on manufacturing export quality. The study found that, first, environmental regulation affected the export quality upgrade of the manufacturing sector through offset effect and compensation effect, and the direction of the impact would mainly depend on the industry's factor input structure. Second, for industries with larger fixed-asset investment(FAI) ratio in the factor input structure, the current environmental regulation policy was not conducive to the export quality upgrading of the industries. However, there was a significant U-shaped dynamic relationship between them. As environmental regulations became stricter, when regulatory stringency went beyond the inflection point, the policy would promote the upgrading of export quality. But for industries with smaller proportion of FAI, environmental regulation exerted a favorable impact on the export quality upgrade, following a J-shaped marginal growth curve.Third, for industries with different factor input structure, their export quality had been effectively upgraded as expected by factors like human capital investment, independent R&D, technology introduction, and foreign direct investment; but raising per capita capital stock and expanding enterprise size did not produce significant direct impact on export quality upgrade. These conclusions remained robust after using different measurement methods and replacing with other variables. Therefore, this paper suggests that governments should take industry heterogeneity into consideration and formulate differentiated hierarchical environmental policies.Besides, they should strengthen the enforcement of the current environmental regulation policies. By doing so, enterprises are forced to improve their technology and product quality so that they can better cope with rising compliance costs, eliminate backward industries, and resolve excess capacity. In this way, the economic structure would be transformed and upgraded from the supply side.展开更多
Waterflooding experiments were performed using Micro-CT on four cores of different pore structures from Donghe sandstone reservoirs in the Tarim Basin. The water, oil and grains were accurately separated by the advanc...Waterflooding experiments were performed using Micro-CT on four cores of different pore structures from Donghe sandstone reservoirs in the Tarim Basin. The water, oil and grains were accurately separated by the advanced image processing technology, the pore network model was established, and parameters such as the number of throats and the throat size distribution were calculated to characterize the microscopic heterogeneity of pore structure, the flow of oil phase during displacement, and the morphology and distribution of remaining oil after displacement. The cores with the same macroscopic porosity-permeability have great differences in microscopic heterogeneity of pore structure. Both macro porosity-permeability and micro heterogeneity of pore structure have an influence on the migration of oil phase and the morphology and distribution of remaining oil. When the heterogeneity is strong, the water phase will preferentially flow through the dominant paths and the remaining oil clusters will be formed in the small pores. The more the number of oil clusters(droplets) formed during displacement process, the smaller the average volume of cluster is, and the remaining oil is dominated by the cluster continuous phase with high saturation. The weaker the heterogeneity, the higher the pore sweep efficiency is, and the remaining oil clusters are mainly trapped in the form of non-continuous phase. The distribution and morphology of micro remaining oil are related to the absolute permeability, capillary number and micro-heterogeneity. So, the identification plate of microscopic residual oil continuity distribution established on this basis can describe the relationship between these three factors and distribution of remaining oil and identify the continuity of the remaining oil distribution accurately.展开更多
To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a...To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs.展开更多
The attenuated vaccine strains of CSFV have a 12-nucleotides (nt) insertion in the 3'-UTR of genome as compared to that of CSFV virulent strains. In this study, we found a distinct heterogeneity in the 3'-UTR of a...The attenuated vaccine strains of CSFV have a 12-nucleotides (nt) insertion in the 3'-UTR of genome as compared to that of CSFV virulent strains. In this study, we found a distinct heterogeneity in the 3'-UTR of attenuated Thiverval and HCLV strains. The longest 3'-UTR of Thiverval strain was 259 base pairs (bp) with a 32-nt insertion, the shortest 3'-UTR had only 233 bp with a 6-nt insertion. The longest 3'-UTR of HCLV strain was 244 bp with a 17-nt insertion and the shortest 3' UTR was 235 bp with a 8-nt insertion. Compared with the published sequences of 3'-UTR of vaccine and virulent strains, the 3'-UTR of CSFV vaccine strains have two variable regions where insertion among the different vaccine strains were frequently found. The first is located between the second conservative TALk codon and the start of T-rich region where we found the variable length insertion in the same vaccine strain Thiveral or HCLV and the second is located between the end of T-rich region and the front of GAA eodon, however, a 4-nt deletion was found in this region in the virulent Shimen strain. These two regions may represent the "hot spot" for mutation. Modeling the secondary structures of the 3'-UTR suggests that the T-rich insertion could result in the change of structure and free energy, thus affecting the stability of the 3'-UTR structure. These findings will help to understand the mechanism of attenuated vaccines and improve vaccine safety, stability, and efficacy.展开更多
In this study,the nano-TiC/AZ61 composites with different heterogeneous bimodal grain(HBG)structures and uniform structure are obtained by regulating the extrusion speed.The effect of HBG structure on the mechanical p...In this study,the nano-TiC/AZ61 composites with different heterogeneous bimodal grain(HBG)structures and uniform structure are obtained by regulating the extrusion speed.The effect of HBG structure on the mechanical properties of the composites is investigated.The increasing ductility and toughening mechanism of HBG magnesium matrix composites are carefully discussed.When the extrusion speed increases from 0.75 mm/s to 2.5 mm/s or 3.5 mm/s,the microstructure transforms from uniform to HBG structure.Compared with Uniform-0.75 mm/s composite,Heterogeneous-3.5 mm/s composite achieves a 116.7%increase in ductility in the plastic deformation stage and almost no reduction in ultimate tensile strength.This is mainly because the lower plastic deformation inhomogeneity and higher strain hardening due to hetero-deformation induced(HDI)hardening.Moreover,Heterogeneous-3.5 mm/s composite achieves a 108.3%increase in toughness compared with the Uniform-0.75 mm/s composite.It is mainly because coarse grain(CG)bands can capture and blunt cracks,thereby increasing the energy dissipation for crack propagation and improving toughness.In addition,the CG band of the Heterogeneous-3.5 mm/s composite with larger grain size and lower dislocation density is more conducive to obtaining higher strain hardening and superior blunting crack capability.Thus,the increased ductility and toughness of the Heterogeneous-3.5 mm/s composite is more significant than that Heterogeneous-2.5 mm/s composite.展开更多
In order to quantify coal pore structure heterogeneity and anisotropy,synchrotron radiation SAXS(Small Angle X-ray Scattering)was applied to obtain the SAXS images of two different rank coal samples.The surface fracta...In order to quantify coal pore structure heterogeneity and anisotropy,synchrotron radiation SAXS(Small Angle X-ray Scattering)was applied to obtain the SAXS images of two different rank coal samples.The surface fractal dimension(D1)and pore fractal dimension(D2)were obtained by processing the image data.The pore structure heterogeneity of two coal samples was quantified by pore fractal dimension(D2).Pore fractal dimension of Xinzhouyao coal is 2.74 and pore fractal dimension of Tangshan coal is 1.69.As a result,the pore structure heterogeneity of Xinzhouyao coal is stronger than that of Tangshan coal.3D pore structure imaging was achieved by synchrotron radiation nano-CT.The selected Region of Interest(ROI)of coal sample was divided into a certain number of subvolumes.Pore structure heterogeneity was quantified by calculating the limit of the relative standard deviation of each subvolume’s porosity.The heterogeneity value of Xinzhouyao coal pore structure is 3.21 and the heterogeneity value of Tangshan coal pore structure is 2.71.As a result,the pore structure heterogeneity of Xinzhouyao coal is also stronger than that of Tangshan coal,namely,pore structure heterogeneity from synchrotron radiation SAXS and synchrotron radiation nano-CT is consistent.Considering the corresponding relationship between the pore structure anisotropy and the permeability anisotropy,the quantification of pore structure anisotropy was realized by computing the permeability tensor of pore structure using the Lattice Boltzmann method(LBM),and the pore structure anisotropy was characterized by the eigenvalues and eigenvectors of the permeability tensor.The pore structure anisotropy obtained by the method proposed in this paper was validated by the pore structure geometrical morphology.展开更多
We investigated the vertical variability of toxic potential (i.e. proportions of cells containing microcystin genes) and genotypic structure within different populations of Microcystis aeruginosa that developed in dee...We investigated the vertical variability of toxic potential (i.e. proportions of cells containing microcystin genes) and genotypic structure within different populations of Microcystis aeruginosa that developed in deep artificial reservoirs on the Loire River (France). We demonstrated that a great qualitative vertical heterogeneity could exist within a single bloom of this cyanobacterium in deep lakes. Indeed, we observed important vertical shifts of both toxic potential and genotypic structure, whatever the bloom magnitude. These variations occurred mainly within the euphotic zone and proved to occur independently from abundance vertical shifts. One of the most striking results of this study is that the genotypic structure of a population of M. aeruginosa was more variable between different depths sampled at a single site than between different sites of the same reservoir sampled on top of the water column. In the same way the proportion of potentially toxic cells was sometimes more variable vertically than horizontally. The occurrence of such vertical heterogeneity in three different blooms suggests that this could be a frequent pattern within populations of M. aeruginosa.展开更多
Objective: To study protein-protein interaction between heterogeneous nuclear ribonucleoprotein H(hn RNP H) and Dengue virus(DENV) proteins. Methods: DENV proteins were screened against the host hn RNP H protein, in o...Objective: To study protein-protein interaction between heterogeneous nuclear ribonucleoprotein H(hn RNP H) and Dengue virus(DENV) proteins. Methods: DENV proteins were screened against the host hn RNP H protein, in order to identify the host-viral protein-protein interactions in DENV infected THP-1 cells by co-immunoprecipitation. The co-localization of the interacting proteins was further confirmed by immunofluorescence microscopy. Results: The host protein hn RNP H was found to interact with DENV nonstructural 1 protein and help the virus to multiply in the cell. Conclusions: The non-structural 1 glycoprotein is a key modulator of host immune response and is also involved in viral replication. Therefore, disruption of this key interaction between hn RNP H and DENV nonstructural 1 could be an important therapeutic strategy for management of DENV infection.展开更多
基金the Hong Kong Polytechnic University(Q-CDBG),the Science and Technology Program of Guangdong Province of China(2020A0505090001)the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.PolyU152178/20E)+2 种基金the National Natural Science Foundation of China(22379052)the Natural Science Foundation of Guangdong(No.2022A1515011667)China Postdoctoral Science Foundation(2021T140268).
文摘Inactive elemental doping is commonly used to improve the structural stability of high-voltage layered transition-metal oxide cathodes.However,the one-step co-doping strategy usually results in small grain size since the low diffusivity ions such as Ti^(4+)will be concentrated on grain boundaries,which hinders the grain growth.In order to synthesize large single-crystal layered oxide cathodes,considering the different diffusivities of different dopant ions,we propose a simple two-step multi-element co-doping strategy to fabricate core–shell structured LiCoO_(2)(CS-LCO).In the current work,the high-diffusivity Al^(3+)/Mg^(2+)ions occupy the core of single-crystal grain while the low diffusivity Ti^(4+)ions enrich the shell layer.The Ti^(4+)-enriched shell layer(~12 nm)with Co/Ti substitution and stronger Ti–O bond gives rise to less oxygen ligand holes.In-situ XRD demonstrates the constrained contraction of c-axis lattice parameter and mitigated structural distortion.Under a high upper cut-off voltage of 4.6 V,the single-crystal CS-LCO maintains a reversible capacity of 159.8 mAh g^(−1)with a good retention of~89%after 300 cycles,and reaches a high specific capacity of 163.8 mAh g^(−1)at 5C.The proposed strategy can be extended to other pairs of low-(Zr^(4+),Ta^(5+),and W6+,etc.)and high-diffusivity cations(Zn^(2+),Ni^(2+),and Fe^(3+),etc.)for rational design of advanced layered oxide core–shell structured cathodes for lithium-ion batteries.
基金supported by Yunnan Fundamental Research Projects(No.202201BE070001-014)Doctoral Scientific Research Foundation of Hubei University of Automotive Technology(No.BK202336)+4 种基金National Natural Science Foundation of China(No.52071035)Program for Science and Technology Innovation Team in Colleges of Hubei Province(No.T2021012)Outstanding Young Scientific&Technological Innovation Team Plan of Colleges and Universities in Hubei Province(No.T201518 and No.T201811)Major Science and Technology Project of Hubei Province(No.2022AAA001)Key R&D Project of Hubei Province(No.2021BAB019)。
文摘In recent years,a new class of metallic materials featuring heterogeneous structures has emerged.These materials consist of distinct soft and hard domains with significant differences in mechanical properties,allowing them to maintain high strength while offering superior ductility.Magnesium(Mg)alloys,renowned for their low density,high specific strength,exceptional vibration damping,and electromagnetic shielding properties,exhibit tremendous potential as lightweight and functional materials.Despite their advantageous properties,high-strength Mg alloys often suffer from limited ductility.However,the emergence of heterogeneous materials provides a fresh perspective for the development of Mg alloys with both high strength and ductility.This article provided a fundamental overview of heterostructured materials and systematically reviewed the recent research progress in the design of Mg alloys with strength-ductility balance based on heterostructure principles.The review encompassed various aspects,including preparation methods,formation mechanisms of diverse heterostructures,and mechanical properties,both within domestic and international contexts.On this basis,the article discussed the challenges encountered in the design and fabrication of heterostructured Mg alloys,as well as the urgent issues that require attention and resolution in the future.
文摘In this paper, we discuss the optimal insurance in the presence of background risk while the insured is ambiguity averse and there exists belief heterogeneity between the insured and the insurer. We give the optimal insurance contract when maxing the insured’s expected utility of his/her remaining wealth under the smooth ambiguity model and the heterogeneous belief form satisfying the MHR condition. We calculate the insurance premium by using generalized Wang’s premium and also introduce a series of stochastic orders proposed by [1] to describe the relationships among the insurable risk, background risk and ambiguity parameter. We obtain the deductible insurance is the optimal insurance while they meet specific dependence structures.
基金Projects(11672195,51301092) supported by the National Natural Science Foundation of ChinaProject(2016JQ0047) supported by Sichuan Youth Science and Technology Foundation,China
文摘Heterogeneous-structured Cu samples composed of coarse-grained(CG) and ultrafine-grained(UFG) domains with a transitional interface were fabricated by friction stir processing, in order to investigate the effect of interface constraint on the yielding and fracture behaviors. Tensile test revealed that the synergetic strengthening induced by elastic/plastic interaction between incompatible domains increases with increasing the area of constraint interface. The strain distribution near interface and the fracture morphology were characterized using digital image correlation technique and scanning electron microscopy, respectively. Fracture dimples preferentially formed at the interface, possibly due to extremely high triaxial stress and strain accumulation near the interface. Surprisingly, the CG domain was fractured by pure shear instead of the expected voids growth caused by tensile stress.
基金the support by National Key Research and Development Program of China(2018YFA0703000)National Natural Science Foundation of China(Grant No.52105310)+1 种基金Natural Science Foundation of Zhejiang Province(Grant No.LDQ23E050001)the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study(Grant No.SN-ZJU-SIAS-004)。
文摘In order to mimic the natural heterogeneity of native tissue and provide a better microenvironment for cell culturing,multi-material bioprinting has become a common solution to construct tissue models in vitro.With the embedded printing method,complex 3D structure can be printed using soft biomaterials with reasonable shape fidelity.However,the current sequential multi-material embedded printing method faces a major challenge,which is the inevitable trade-off between the printed structural integrity and printing precision.Here,we propose a simultaneous multi-material embedded printing method.With this method,we can easily print firmly attached and high-precision multilayer structures.With multiple individually controlled nozzles,different biomaterials can be precisely deposited into a single crevasse,minimizing uncontrolled squeezing and guarantees no contamination of embedding medium within the structure.We analyse the dynamics of the extruded bioink in the embedding medium both analytically and experimentally,and quantitatively evaluate the effects of printing parameters including printing speed and rheology of embedding medium,on the 3D morphology of the printed filament.We demonstrate the printing of double-layer thin-walled structures,each layer less than 200μm,as well as intestine and liver models with 5%gelatin methacryloyl that are crosslinked and extracted from the embedding medium without significant impairment or delamination.The peeling test further proves that the proposed method offers better structural integrity than conventional sequential printing methods.The proposed simultaneous multi-material embedded printing method can serve as a powerful tool to support the complex heterogeneous structure fabrication and open unique prospects for personalized medicine.
基金financial support from the National Key R&D Program of China(Grant No.2017YFA0204403)financial support by the National Natural Science Foundation of China(Grant No.51931010,51601196 and U1608257)+2 种基金the Liaoning Revitalization Talents Program(Grant No.XLYC1802026)the Key Research Program of Frontier Science,Chinese Academy of Sciencesthe financial support of the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX180408).
文摘We produced a 316 L stainless steel with heterogeneous nanometer-thick lamellar structures by severe cold-rolling at room temperature,and conducted micro-scale tensile tests in different orientations to evaluate both the inplane(parallel to the nano-lamellae)and out-of-plane(normal and 45inclined to the nano-lamellae)mechanical anisotropy.The parallel orientation demonstrates the greatest tensile strength while the inclined orientation exhibits the least strength.The tensile tests in normal and inclined directions also indicate significant transient elastic-plastic response due to the strain path change.Fractographic examination demonstrates that the specimen fails in the normal direction by premature micro-void nucleation and growth,which restricts its tensile strength;however,we identified zig-zag cracking associated with lamellar shear cracking in the inclined direction.
基金financially supported by the National Natural Science Foundation of China (Nos.52071035,U1764253)。
文摘The influence of extrusion temperature on microstructure and mechanical properties of heterogeneous Mg−1Gd/Mg−13Gd laminate prepared by accumulated extrusion bonding was investigated.The results reveal that the Mg−1Gd/Mg−13Gd laminate forms a significant difference in grain size between the successive layers when extruded at 330℃,and this difference gradually disappears as the extrusion temperature increases from 380 to 430℃.Besides,the growth rate of recrystallized grains in fine-grained layers is faster than that in coarse-grained layers.Moreover,the diffusion ability of Gd element increases with elevating extrusion temperatures,promoting the increase and coarsening of precipitates in fine-grained layers.Tensile tests indicate that the sample extruded at 380℃ has a superior combination of strength and ductility.This is mainly attributed to the synergy of the heterogeneous texture between coarse and fine-grained layers,hetero-deformation induced strengthening and hardening.The fine-grained layers facilitate the activation of prismaticáañslips,while coarse-grained layers make it easier to active basaláañand pyramidalác+añslips,especially for the sample extruded at 380℃.The activation of pyramidalác+añslips contributes to coordinating further plastic deformation.
基金supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Number 5R01AR037399the UCLA Vector Core (Emmanuelle Faure and Kip Hermann) for vector and viral preparations supported by JCCC/P30 CA016042 and CURE/P30 DK41301
文摘Heterogeneous nuclear ribonucleoprotein (hnRNP) C plays a key role in RNA processing but also exerts a dominant negative effect on responses to 1,25-dihydroxyvitamin D (1,25(OH)2D) by functioning as a vitamin D response element-binding protein (VDRE-BP). hnRNPC acts a tetramer of hnRNPC1 (huC1) and hnRNPC2 (huC2), and organization of these subunits is critical to in vivo nucleic acid-binding. Overexpression of either huC1 or huC2 in human osteoblasts is sufficient to confer VDRE-BP suppression of 1,25(OH)2D-mediated transcription. However, huC1 or huC2 alone did not suppress 1,25(OH)2D-induced transcription in mouse osteoblastic cells. By contrast, overexpression of huC1 and huC2 in combination or transfection with a bone-specific polycistronic vector using a "self-cleaving" 2A peptide to co-express huC1/C2 suppressed 1,25D-mediated induction of osteoblast target gene expression. Structural diversity of hnRNPC between human/NWPs and mouse/rat/rabbit/dog was investigated by analysis of sequence variations within the hnRNP CLZ domain. The predicted loss of distal helical function in hnRNPC from lower species provides an explanation for the altered interaction between huC1/C2 and their mouse counterparts. These data provide new evidence of a role for hnRNPC1/C2 in 1,25(OH)2D-driven gene expression, and further suggest that species-specific tetramerization is a crucial determinant of its actions as a regulator of VDR-directed transactivation.
文摘The graded multiweb structure of heterogeneous anisotropic materials, which makes full use of the continuous, gradual and changing physical mechanical performance of material properties, has a widespread application in aeroplane aerofoil structure and automobile lightweight structure. On the basis of laminate buckling theory, the equivalent rigidity method is adopted to establish the corresponding constitutive relation and the non-linear buckling governing equation for the graded multiweb structure. In finding the solution, the critical load of buckling under different complicated boundary conditions together with combined loads were obtained and testification of the experimental analysis shows that the calculation results can satisfy the requirements of engineering design in a satisfactory way. Results obtained from the research say that: graded materials can reduce the concentrated stress on the interface in an effective way and weaken the effect of initial defect in materials and thereby improve the strength and toughness of materials.
文摘Heterogeneity of biological samples is usually considered a major obstacle for three-dimensional (3D) structure determination of macromolecular complexes. Heterogeneity may occur at the level of composition or conformational variability of complexes and affects most 3D structure determination methods that rely on signal averaging. Here, an approach is described that allows sorting structural states based on a 3D statistical approach, the 3D sampling and classification (3D-SC) of 3D structures derived from single particles imaged by cryo electron microscopy (cryo-EM). The method is based on jackknifing & bootstrapping of 3D sub-ensembles and 3D multivariate statistical analysis followed by 3D classification. The robustness of the statistical sorting procedure is corroborated using model data from an RNA polymerase structure and experimental data from a ribosome complex. It allows resolving multiple states within heterogeneous complexes that thus become amendable for a structural analysis despite of their highly flexible nature. The method has important implications for high-resolution structural studies and allows describing structure ensembles to provide insights into the dynamics of multi-component macromolecular assemblies.
基金supported by the Natural Science Foundation of Jiangsu Province (BK20181362)the National Natural Science Foundation of China (No. 41772141)+3 种基金the Scientific Research Foundation of Hebei Province (No. 2014995001)the National Science and Technology Major Project (2017ZX05035004)the Fundamental Research Funds for the Central Universities (2017CXNL03)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Micro-heterogeneity is an integral parameter of the pore structure of shale gas reservoir and it forms an essential basis for setting and adjusting development parameters.In this study,scanning electron microscopy,high-pressure mercury intrusion and low-temperature nitrogen adsorption experiments were used to qualitatively and quantitatively characterize the pore structure of black shale from the third member of the Xiamaling Formation in the Yanshan area.The pore heterogeneity was studied using fractal theory,and the controlling factors of pore development and heterogeneity were evaluated in combination with geochemical parameters,mineral composition,and geological evolution history.The results show that the pore structure of the reservoir was intricate and complicated.Moreover,various types of micro-nano scale pores such as dissolution pores,intergranular pores,interlayer pores,and micro-cracks are well developed in member 3 of the Xiamaling Formation.The average porosity was found to be 6.30%,and the mean value of the average pore size was 4.78 nm.Micropores and transition pores provided most of the storage space.Pore development was significantly affected by the region and was mainly related to the total organic carbon content,vitrinite reflectance and mineral composition.The fractal dimension,which characterizes the heterogeneity,is 2.66 on average,indicating that the pore structure is highly heterogeneous.Fractal dimension is positively correlated with maturity and clay mineral content,while it is negatively correlated with brittle mineral content and average pore size.These results indicate that pore heterogeneity is closely related to thermal history and material composition.Combined with the geological background of this area,it was found that the pore heterogeneity was mainly controlled by the Jurassic magmatism.The more intense the magma intrusion,the stronger the pore heterogeneity.The pore structure and its heterogeneity characteristics present today are a general reflection of the superimposed geological processes of sedimentary-diagenetic-late transformation.The influence of magmatic intrusion on the reservoir is the main geological factor that should be considered for detailed evaluation of the Xiamaling Formation shale gas reservoir in the Yanshan area.
基金This work was supported by the National Key R&D Program of China(No.2020YFA 0711800)the National Natural Science Foundation of China(No.41772141,41972171)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20181362)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Fine characterization of pore systems and heterogeneity of shale reservoirs are significant contents of shale gas reservoir physical property research. The research on micro-control factors of low productivity in the Qiongzhusi Formation(Fm.) is still controversial. The lower Cambrian Qiongzhusi Fm. in the Qujing, Yunnan was taken as the object to investigate the influence of mineral compositions on the physical properties of the reservoir and the heterogeneity of shale, using the algorithm to improve the characterization ability of Atomic Force Microscopy(AFM). The results showed that:(1) The pores are mainly wedge-shaped pores and V-shaped pores. The pore diameter of the main pore segment ranges from 5 to 10 nm. Mesopores are mainly developed in the Qiongzhusi Fm. shale in Well QD1, with the average pore diameter of 6.08 nm.(2) Microscopic pore structure and shale surface properties show strong heterogeneity, which complicates the micro-migration of shale gas and increases the difficulty of identifying high-quality reservoirs.(3) The increase of clay mineral content intensifies the compaction and then destroys the pores. Conversely, brittle minerals can protect pores. The support and protection of brittle minerals to pores space depend on their content, mechanical properties and diagenesis.(4)Compression damage to pores, large microscopic roughness and surface fluctuations and strong pore structure heterogeneity are the reasons for the poor gas storage capacity of the Qiongzhusi Fm., which will lead to poor productivity in the Qiongzhusi Fm.
文摘In the analysis of how environmental regulation affects the comparative advantage of trade,existing literature ignores industry's inherent heterogeneity, which draws remarkably different conclusions. In view of this, the paper analyzed the mechanism of environmental regulation on the export quality of different industries from the perspective of factor input structure heterogeneity. Based on the panel data of China's manufacturing industry, the paper used the system generalized method of moments method to examine the heterogeneity influence of environmental regulation on manufacturing export quality. The study found that, first, environmental regulation affected the export quality upgrade of the manufacturing sector through offset effect and compensation effect, and the direction of the impact would mainly depend on the industry's factor input structure. Second, for industries with larger fixed-asset investment(FAI) ratio in the factor input structure, the current environmental regulation policy was not conducive to the export quality upgrading of the industries. However, there was a significant U-shaped dynamic relationship between them. As environmental regulations became stricter, when regulatory stringency went beyond the inflection point, the policy would promote the upgrading of export quality. But for industries with smaller proportion of FAI, environmental regulation exerted a favorable impact on the export quality upgrade, following a J-shaped marginal growth curve.Third, for industries with different factor input structure, their export quality had been effectively upgraded as expected by factors like human capital investment, independent R&D, technology introduction, and foreign direct investment; but raising per capita capital stock and expanding enterprise size did not produce significant direct impact on export quality upgrade. These conclusions remained robust after using different measurement methods and replacing with other variables. Therefore, this paper suggests that governments should take industry heterogeneity into consideration and formulate differentiated hierarchical environmental policies.Besides, they should strengthen the enforcement of the current environmental regulation policies. By doing so, enterprises are forced to improve their technology and product quality so that they can better cope with rising compliance costs, eliminate backward industries, and resolve excess capacity. In this way, the economic structure would be transformed and upgraded from the supply side.
基金Supported by the China National Science and Technology Major Project(2017ZX05009-005)the National Natural Science Foundation of China(51674271)
文摘Waterflooding experiments were performed using Micro-CT on four cores of different pore structures from Donghe sandstone reservoirs in the Tarim Basin. The water, oil and grains were accurately separated by the advanced image processing technology, the pore network model was established, and parameters such as the number of throats and the throat size distribution were calculated to characterize the microscopic heterogeneity of pore structure, the flow of oil phase during displacement, and the morphology and distribution of remaining oil after displacement. The cores with the same macroscopic porosity-permeability have great differences in microscopic heterogeneity of pore structure. Both macro porosity-permeability and micro heterogeneity of pore structure have an influence on the migration of oil phase and the morphology and distribution of remaining oil. When the heterogeneity is strong, the water phase will preferentially flow through the dominant paths and the remaining oil clusters will be formed in the small pores. The more the number of oil clusters(droplets) formed during displacement process, the smaller the average volume of cluster is, and the remaining oil is dominated by the cluster continuous phase with high saturation. The weaker the heterogeneity, the higher the pore sweep efficiency is, and the remaining oil clusters are mainly trapped in the form of non-continuous phase. The distribution and morphology of micro remaining oil are related to the absolute permeability, capillary number and micro-heterogeneity. So, the identification plate of microscopic residual oil continuity distribution established on this basis can describe the relationship between these three factors and distribution of remaining oil and identify the continuity of the remaining oil distribution accurately.
基金supported by the Major Science and Technology Project(Nos.CNOOC-KJ 135 ZDXM 38 ZJ 01 ZJ,KJGG2021-0505) of CNOOC Co.,Ltd.of Chinathe National Natural Science Foundation of China(No.42002171)+2 种基金China Postdoctoral Science Foundation(Nos.2020TQ0299,2020M682520)Postdoctoral Innovation Science Foundation of Hubei Province of ChinaScientific Research Project of Zhanjiang Branch of CNOOC(No.ZYKY-2022-ZJ-02)。
文摘To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs.
基金supported by the National Natural Science Foundation of China (30571377)the National High-Tech R&D Program of China (863 Program,2006AA10A204)
文摘The attenuated vaccine strains of CSFV have a 12-nucleotides (nt) insertion in the 3'-UTR of genome as compared to that of CSFV virulent strains. In this study, we found a distinct heterogeneity in the 3'-UTR of attenuated Thiverval and HCLV strains. The longest 3'-UTR of Thiverval strain was 259 base pairs (bp) with a 32-nt insertion, the shortest 3'-UTR had only 233 bp with a 6-nt insertion. The longest 3'-UTR of HCLV strain was 244 bp with a 17-nt insertion and the shortest 3' UTR was 235 bp with a 8-nt insertion. Compared with the published sequences of 3'-UTR of vaccine and virulent strains, the 3'-UTR of CSFV vaccine strains have two variable regions where insertion among the different vaccine strains were frequently found. The first is located between the second conservative TALk codon and the start of T-rich region where we found the variable length insertion in the same vaccine strain Thiveral or HCLV and the second is located between the end of T-rich region and the front of GAA eodon, however, a 4-nt deletion was found in this region in the virulent Shimen strain. These two regions may represent the "hot spot" for mutation. Modeling the secondary structures of the 3'-UTR suggests that the T-rich insertion could result in the change of structure and free energy, thus affecting the stability of the 3'-UTR structure. These findings will help to understand the mechanism of attenuated vaccines and improve vaccine safety, stability, and efficacy.
基金support from China Scholarship Council(No.202107000038)the Na-tional Natural Science Foundation of China(52004227).
文摘In this study,the nano-TiC/AZ61 composites with different heterogeneous bimodal grain(HBG)structures and uniform structure are obtained by regulating the extrusion speed.The effect of HBG structure on the mechanical properties of the composites is investigated.The increasing ductility and toughening mechanism of HBG magnesium matrix composites are carefully discussed.When the extrusion speed increases from 0.75 mm/s to 2.5 mm/s or 3.5 mm/s,the microstructure transforms from uniform to HBG structure.Compared with Uniform-0.75 mm/s composite,Heterogeneous-3.5 mm/s composite achieves a 116.7%increase in ductility in the plastic deformation stage and almost no reduction in ultimate tensile strength.This is mainly because the lower plastic deformation inhomogeneity and higher strain hardening due to hetero-deformation induced(HDI)hardening.Moreover,Heterogeneous-3.5 mm/s composite achieves a 108.3%increase in toughness compared with the Uniform-0.75 mm/s composite.It is mainly because coarse grain(CG)bands can capture and blunt cracks,thereby increasing the energy dissipation for crack propagation and improving toughness.In addition,the CG band of the Heterogeneous-3.5 mm/s composite with larger grain size and lower dislocation density is more conducive to obtaining higher strain hardening and superior blunting crack capability.Thus,the increased ductility and toughness of the Heterogeneous-3.5 mm/s composite is more significant than that Heterogeneous-2.5 mm/s composite.
基金Supported by the National Natural Science Foundation of China(51861145403,51874312)China Postdoctoral Science Foundation(2018M641526).
文摘In order to quantify coal pore structure heterogeneity and anisotropy,synchrotron radiation SAXS(Small Angle X-ray Scattering)was applied to obtain the SAXS images of two different rank coal samples.The surface fractal dimension(D1)and pore fractal dimension(D2)were obtained by processing the image data.The pore structure heterogeneity of two coal samples was quantified by pore fractal dimension(D2).Pore fractal dimension of Xinzhouyao coal is 2.74 and pore fractal dimension of Tangshan coal is 1.69.As a result,the pore structure heterogeneity of Xinzhouyao coal is stronger than that of Tangshan coal.3D pore structure imaging was achieved by synchrotron radiation nano-CT.The selected Region of Interest(ROI)of coal sample was divided into a certain number of subvolumes.Pore structure heterogeneity was quantified by calculating the limit of the relative standard deviation of each subvolume’s porosity.The heterogeneity value of Xinzhouyao coal pore structure is 3.21 and the heterogeneity value of Tangshan coal pore structure is 2.71.As a result,the pore structure heterogeneity of Xinzhouyao coal is also stronger than that of Tangshan coal,namely,pore structure heterogeneity from synchrotron radiation SAXS and synchrotron radiation nano-CT is consistent.Considering the corresponding relationship between the pore structure anisotropy and the permeability anisotropy,the quantification of pore structure anisotropy was realized by computing the permeability tensor of pore structure using the Lattice Boltzmann method(LBM),and the pore structure anisotropy was characterized by the eigenvalues and eigenvectors of the permeability tensor.The pore structure anisotropy obtained by the method proposed in this paper was validated by the pore structure geometrical morphology.
文摘We investigated the vertical variability of toxic potential (i.e. proportions of cells containing microcystin genes) and genotypic structure within different populations of Microcystis aeruginosa that developed in deep artificial reservoirs on the Loire River (France). We demonstrated that a great qualitative vertical heterogeneity could exist within a single bloom of this cyanobacterium in deep lakes. Indeed, we observed important vertical shifts of both toxic potential and genotypic structure, whatever the bloom magnitude. These variations occurred mainly within the euphotic zone and proved to occur independently from abundance vertical shifts. One of the most striking results of this study is that the genotypic structure of a population of M. aeruginosa was more variable between different depths sampled at a single site than between different sites of the same reservoir sampled on top of the water column. In the same way the proportion of potentially toxic cells was sometimes more variable vertically than horizontally. The occurrence of such vertical heterogeneity in three different blooms suggests that this could be a frequent pattern within populations of M. aeruginosa.
基金supported by the Defence Institute of Physiology and Allied SciencesDefence Research and Development Organization+1 种基金Ministry of DefenceIndia in the form of TASK-177
文摘Objective: To study protein-protein interaction between heterogeneous nuclear ribonucleoprotein H(hn RNP H) and Dengue virus(DENV) proteins. Methods: DENV proteins were screened against the host hn RNP H protein, in order to identify the host-viral protein-protein interactions in DENV infected THP-1 cells by co-immunoprecipitation. The co-localization of the interacting proteins was further confirmed by immunofluorescence microscopy. Results: The host protein hn RNP H was found to interact with DENV nonstructural 1 protein and help the virus to multiply in the cell. Conclusions: The non-structural 1 glycoprotein is a key modulator of host immune response and is also involved in viral replication. Therefore, disruption of this key interaction between hn RNP H and DENV nonstructural 1 could be an important therapeutic strategy for management of DENV infection.