期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Refined mathematical model for the breaching of concrete-face sand-gravel dams due to overtopping failure
1
作者 QIU Wen LI Yan-long +2 位作者 WEN Li-feng WANG Jing YIN Qiao-gang 《Journal of Mountain Science》 SCIE CSCD 2023年第3期670-687,共18页
Overtopping is one of the main reasons for the breaching of concrete-face sand-gravel dams(CFSGDs).In this study,a refined mathematical model was established based on the characteristics of the overtopping breaching o... Overtopping is one of the main reasons for the breaching of concrete-face sand-gravel dams(CFSGDs).In this study,a refined mathematical model was established based on the characteristics of the overtopping breaching of CFSGDs.The model characteristics were as follows:(1)Based on the Renormailzation Group(RNG)k-εturbulence theory and volume of fluid(VOF)method,the turbulent characteristics of the dam-break flow were simulated,and the erosion surface of the water and soil was tracked;(2)In consideration of the influence of the change in the sediment content on the dam-break flow,the dam material transport equation,which could reflect the characteristics of particle settlement and entrainment motion,was used to simulate the erosion process of the sand gravels;(3)Based on the bending moment balance method,a failure equation of the concrete face slab under dead weight and water load was established.The proposed model was verified through a case study on the failure of the Gouhou CFSGD.The results showed that the proposed model could well simulate the erosion mode of the special vortex flow of the CFSGD scouring the support body of the concrete face slab inward and reflect the mutual coupling relationship between the dam-break flow,sand gravels,and concrete face slabs.Compared with the measured values,the relative errors of the peak discharge,final breach average width,dam breaching duration,and maximum failure length of the face slab calculated using the proposed model were all less than 12%,thus verifying the rationality of the model.The proposed model was demonstrated to perform better and provide more detailed results than three selected parametric models and three simplified mathematical models.The study results can aid in establishing the risk level and devising early warning strategies for CFSGDs. 展开更多
关键词 Concrete-face sand-gravel dam OVERTOPPING Dam-break flow Concrete face slab failure Refined mathematical model
下载PDF
Failure responses of rock tunnel faces during excavation through the fault-fracture zone 被引量:3
2
作者 Zeyu Li Hongwei Huang +1 位作者 Mingliang Zhou Dongming Zhang 《Underground Space》 SCIE EI CSCD 2023年第3期166-181,共16页
It is essential to cast light on the construction risks in tunnel excavations through the fault-fracture zone(FFZ).This study adopts the material point method(MPM)to simulate the failure responses of a rock tunnel fac... It is essential to cast light on the construction risks in tunnel excavations through the fault-fracture zone(FFZ).This study adopts the material point method(MPM)to simulate the failure responses of a rock tunnel face during excavation through the FFZ.A numerical study was conducted to compare a physical model test and validate the feasibility of using the MPM in simulating tunnel face failure.One hundred ninety numerical simulation cases were constructed to represent a rock tunnel excavation project with different site con-figurations.The simulation results suggest that the cohesion and the friction angle significantly influence failure responses.The tunnel cover depth can magnify the failure responses,and the FFZ thickness significantly affects the mobilized rock mass volume when the FFZ consists of a weak rock mass.The numerical simulation results suggest three deformation patterns:face bulge,partial failure,and slide collapse.The failure responses can be characterized by stress arch,slip surface,angle of reposing,and influence range.The insights suggested by the face failure responses during excavation through the FFZ can aid field engineers in determining the scope of possible damage,and in establishing emergency measures to minimize losses if such failure occurs. 展开更多
关键词 Tunnel face failure Rock tunnel excavation Large deformation Fracture fault zone Material point method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部