The IMU(inertial measurement unit) error equations in the earth fixed coordinates are introduced firstly. A fading Kalman filtering is simply introduced and its shortcomings are analyzed, then an adaptive filtering ...The IMU(inertial measurement unit) error equations in the earth fixed coordinates are introduced firstly. A fading Kalman filtering is simply introduced and its shortcomings are analyzed, then an adaptive filtering is applied in IMU/GPS integrated navigation system, in which the adaptive factor is replaced by the fading factor. A practical example is given. The resuits prove that the adaptive filter combined with the fading factor is valid and reliable when applied in IMU/GPS integrated navigation system.展开更多
Two kinds of fading filters and their principles are introduced. An adaptive robust filter is given with corresponding principle. The basic abilities of the fading filters and adaptively robust filter in controlling t...Two kinds of fading filters and their principles are introduced. An adaptive robust filter is given with corresponding principle. The basic abilities of the fading filters and adaptively robust filter in controlling the influences of the kinematic model errors are analyzed. A practical example is given. The results of the fading filter and adaptively robust filter are compared and analyzed.展开更多
This paper presents an effective and feasible method for detecting dynamic load-altering attacks(D-LAAs)in a smart grid.First,a smart grid discrete system model is established in view of D-LAAs.Second,an adaptive fadi...This paper presents an effective and feasible method for detecting dynamic load-altering attacks(D-LAAs)in a smart grid.First,a smart grid discrete system model is established in view of D-LAAs.Second,an adaptive fading Kalman filter(AFKF)is designed for estimating the state of the smart grid.The AFKF can completely filter out the Gaussian noise of the power system,and obtain a more accurate state change curve(including consideration of the attack).A Euclidean distance ratio detection algorithm based on the AFKF is proposed for detecting D-LAAs.Amplifying imperceptible D-LAAs through the new Euclidean distance ratio improves the D-LAA detection sensitivity,especially for very weak D-LAA attacks.Finally,the feasibility and effectiveness of the Euclidean distance ratio detection algorithm are verified based on simulations.展开更多
Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly convergin...Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly converging speedy and a limited precision when using Kalman filter(KF) algorithm. In this study, a new current statistical model and a new Kalman filter are proposed to improve the performance of maneuvering target tracking. The new model which employs innovation dominated subjection function to adaptively adjust maneuvering frequency has a better performance in step maneuvering target tracking, while a fluctuant phenomenon appears. As far as this problem is concerned, a new adaptive fading Kalman filter is proposed as well. In the new Kalman filter, the prediction values are amended in time by setting judgment and amendment rules,so that tracking precision and fluctuant phenomenon of the new current statistical model are improved. The results of simulation indicate the effectiveness of the new algorithm and the practical guiding significance.展开更多
To solve the problem that the standard Kalman filter cannot give the optimal solution when the system model and stochastic information are unknown accurately, single fading factor Kalman filter is suitable for simple ...To solve the problem that the standard Kalman filter cannot give the optimal solution when the system model and stochastic information are unknown accurately, single fading factor Kalman filter is suitable for simple systems. But for complex systems with multi-variable, it may not be sufficient to use single fading factor as a multiplier for the covariance matrices. In this paper, a new multiple fading factors Kalman filtering algorithm is presented. By calculating the unbiased estimate of the innovation sequence covariance using fenestration, the fading factor matrix is obtained. Adjusting the covariance matrix of prediction error Pk|k-1 using fading factor matrix, the algorithm provides different rates of fading for different filter channels. The proposed algorithm is applied to strapdown inertial navigation system (SINS) initial alignment, and simulation and experimental results demonstrate that, the alignment accuracy can be upgraded dramatically when the actual system noise characteristics are different from the pre-set values. The new algorithm is less sensitive to uncertainty noise and has better estimation effect of the parameters. Therefore, it is of significant value in practical applications.展开更多
基金Supported by the National Natural Science Foundation of China (No.40274002 No.40474001).
文摘The IMU(inertial measurement unit) error equations in the earth fixed coordinates are introduced firstly. A fading Kalman filtering is simply introduced and its shortcomings are analyzed, then an adaptive filtering is applied in IMU/GPS integrated navigation system, in which the adaptive factor is replaced by the fading factor. A practical example is given. The resuits prove that the adaptive filter combined with the fading factor is valid and reliable when applied in IMU/GPS integrated navigation system.
基金Supported by the National Natural Science Foundation of China (No.40174009, No.40274002).
文摘Two kinds of fading filters and their principles are introduced. An adaptive robust filter is given with corresponding principle. The basic abilities of the fading filters and adaptively robust filter in controlling the influences of the kinematic model errors are analyzed. A practical example is given. The results of the fading filter and adaptively robust filter are compared and analyzed.
基金the Science and Technology Project of the State Grid Shandong Electric Power Company:Research on the vulnerability and prevention of the electrical cyber-physical monitoring system based on interdependent networksthe National Natural Science Foundation of China(61873057)and the Education Department of Jilin Province(JJKH20200118KJ).
文摘This paper presents an effective and feasible method for detecting dynamic load-altering attacks(D-LAAs)in a smart grid.First,a smart grid discrete system model is established in view of D-LAAs.Second,an adaptive fading Kalman filter(AFKF)is designed for estimating the state of the smart grid.The AFKF can completely filter out the Gaussian noise of the power system,and obtain a more accurate state change curve(including consideration of the attack).A Euclidean distance ratio detection algorithm based on the AFKF is proposed for detecting D-LAAs.Amplifying imperceptible D-LAAs through the new Euclidean distance ratio improves the D-LAA detection sensitivity,especially for very weak D-LAA attacks.Finally,the feasibility and effectiveness of the Euclidean distance ratio detection algorithm are verified based on simulations.
基金supported by Natural Science Foundation Research Project of Shanxi Science and Technology Department(2016JM1032)
文摘Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly converging speedy and a limited precision when using Kalman filter(KF) algorithm. In this study, a new current statistical model and a new Kalman filter are proposed to improve the performance of maneuvering target tracking. The new model which employs innovation dominated subjection function to adaptively adjust maneuvering frequency has a better performance in step maneuvering target tracking, while a fluctuant phenomenon appears. As far as this problem is concerned, a new adaptive fading Kalman filter is proposed as well. In the new Kalman filter, the prediction values are amended in time by setting judgment and amendment rules,so that tracking precision and fluctuant phenomenon of the new current statistical model are improved. The results of simulation indicate the effectiveness of the new algorithm and the practical guiding significance.
基金Pre-research Foundation of PLA General Armaments Department (51309010602) National Natural Science Foundation of China (60774002)
文摘To solve the problem that the standard Kalman filter cannot give the optimal solution when the system model and stochastic information are unknown accurately, single fading factor Kalman filter is suitable for simple systems. But for complex systems with multi-variable, it may not be sufficient to use single fading factor as a multiplier for the covariance matrices. In this paper, a new multiple fading factors Kalman filtering algorithm is presented. By calculating the unbiased estimate of the innovation sequence covariance using fenestration, the fading factor matrix is obtained. Adjusting the covariance matrix of prediction error Pk|k-1 using fading factor matrix, the algorithm provides different rates of fading for different filter channels. The proposed algorithm is applied to strapdown inertial navigation system (SINS) initial alignment, and simulation and experimental results demonstrate that, the alignment accuracy can be upgraded dramatically when the actual system noise characteristics are different from the pre-set values. The new algorithm is less sensitive to uncertainty noise and has better estimation effect of the parameters. Therefore, it is of significant value in practical applications.