A novel cooperative diversity scheme based on Distributed Space-Time Block Coding and Multi-Carrier Code Division Multiple Access (DSTBC-MC-CDMA) is proposed which works well in frequency selective fading channels wit...A novel cooperative diversity scheme based on Distributed Space-Time Block Coding and Multi-Carrier Code Division Multiple Access (DSTBC-MC-CDMA) is proposed which works well in frequency selective fading channels with multiple single-antenna users. And an analytical error model is established to describe the symbol decoding errors between interusers, based on which a close form expression for theoretical Bit Error Rate (BER) performance of the scheme is derived to analyze the influence of the interuser decoding errors on the BER performance of the scheme. Then simulation is complimented to verify the analytic result above, which also shows that the BER performance of DSTBC-MC-CDMA outgoes that of non-cooperative MC-CDMA with considerable gains. Further- more, the simulations coincide with the theoretical results well.展开更多
In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and no...In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and non-Gaussian noise in an application environment of BLAST system. With othogonal matrix triangularization (QR decomposition) of the channel matrix, the static observation equation of frequency selective fading BLAST system is transformed into a dynamic state space model, and then the particle filter is used for space-time layered detection. Making the full use of the finite alphabet of the digital modulation communication signal, the optimal proposal distribution can be chosen to produce particle and update the weight. Incorporated with current method of reducing error propagation, a new space-time layered detection algorithm is proposed. Simulation result shows the validity of the proposed algorithm.展开更多
In this paper,using cyclostationarity-based sensing method to detect the presence of Orthogonal Frequency Division Multiplexing(OFDM) signal over doubly-selective fading channels is studied.By approximating the channe...In this paper,using cyclostationarity-based sensing method to detect the presence of Orthogonal Frequency Division Multiplexing(OFDM) signal over doubly-selective fading channels is studied.By approximating the channel with Basis Expansion Model(BEM),we derive the second-order cyclostationary statistics of the received OFDM signal over doubly-selective fading channels.Theoretical analysis indicates that new cyclostationary signatures produced by Doppler spread and multipath delay can be further exploited in the detecting process.Simulation examples demonstrate that the sensing methods using channel-induced cyclostationary features provide substantial improvements on detection performance.展开更多
The performance analysis, using outage capacity for a forward link cellular communications system is presented. The effects of correlated fading, the distribution of angle of arrivals, and the array configurations are...The performance analysis, using outage capacity for a forward link cellular communications system is presented. The effects of correlated fading, the distribution of angle of arrivals, and the array configurations are considered. The objective is to examine the effect of angle of arrival (AOA) energy distributions on two systems (transmit diversity and beamforming) with angle spread. We do so by comparing the performance of transmit diversity with a system that uses beamforming to point a relatively narrow beam at the mobile station. Analytical results show that the transmit diversity system using uniform linear arrays (ULA) and uniform circular arrays (UCA) with truncated Laplacian AOA, performs better even at smaller angle spreads as compared to other energy distributions. The ULA geometry is a preferable configuration for transmit diversity system as compared to UCA.展开更多
We analyze the performance of a twoway satellite-terrestrial decode-and-forward(DF) relay network over non-identical fading channels.In particular,selective physical-layer network coding(SPNC) is employed in the propo...We analyze the performance of a twoway satellite-terrestrial decode-and-forward(DF) relay network over non-identical fading channels.In particular,selective physical-layer network coding(SPNC) is employed in the proposed network to improve the average end-to-end throughput performance.More specifically,by assuming that the DF relay performs instantaneous throughput comparisons before performing corresponding protocols,we derive the expressions of system instantaneous bit-error-rate(BER),instantaneous end-to-end throughput,average end-to-end throughput,single node detection(SND)occurrence probability and average end-to-end BER over non-identical fading channels.Finally,theoretical analyses and Monte Carlo simulation results are presented.Evaluations show that:1) SPNC protocol outperforms the conventional physical-layer network coding(PNC) protocol in infrequent light shadowing(ILS),average shadowing(AS) and frequent heavy shadowing(FHS) Shadowed-Rician fading channels.2) As the satellite-relay channel fading gets more sewere,SPNC protocol can achieve more performance improvement than PNC protocol and the occurrence probability of SND protocol increases progressively.3) The occurrence probability increase of SND has a beneficial effect on the average end-to-end throughput in low signal-to-noise ratio(SNR) regime,while the occurrence probability decrease of SND has a beneficial effect on the average end-to-end BER in highSNR regime.展开更多
This paper represents a comparative performance evaluation of different diversity combining techniques for a SIMO-OFDM (single-input-multiple-output orthogonal frequency division multiplexing) system over Rayleigh f...This paper represents a comparative performance evaluation of different diversity combining techniques for a SIMO-OFDM (single-input-multiple-output orthogonal frequency division multiplexing) system over Rayleigh fading channel. OFDM is a key technique for achieving high data rates and spectral efficiency requirements for wireless communication systems. But in scattering environment, the system performances are severely degraded by the effects of multipath fading and inter-symbol interference. In wireless communication systems, antenna diversity is an important technique to combat multipath fading in order to improve the system performance and increase the channel capacity. In this paper, the performance of different diversity combining techniques-SC (selection combining), EGC (equal gain combining) and MRC (maximal ratio combining) has been analyzed and compared in terms of SNR (signal to noise ratio) and BER (bit error rate) probability. The simulation results show that the maximal ratio combining technique provides maximum performance improvement relative to all other combining schemes by maximizing the SNR of SIMO-OFDM system at the combiner output. The analytic expressions of error probability and effective bit energy to noise ratio correlated with BPSK (binary phase shift keying) modulation have been derived and formulated for N-branch SC, EGC and MRC schemes. The BER characteristics for all three combining techniques are simulated in MATLAB (matrix laboratory) tool box for varying bit energy to noise ratio. Our results also derives that SNR can be improved if the number of receiving antenna is increased, which in turn reduces BER over a Rayleigh fading channel.展开更多
To improve the performance of space-time coding over downlink frequency-selective correlated fading channels, a novel transmission scheme combining eigenbeamfoming and OFDM is proposed. Provided that the channel corre...To improve the performance of space-time coding over downlink frequency-selective correlated fading channels, a novel transmission scheme combining eigenbeamfoming and OFDM is proposed. Provided that the channel correlated statistics are available at the transmitter, the wideband correlated fading channels can be converted into an independent FIR channel with 2 transmitting antennas and N receiving antennas by eigenbeamforming and dimension reduction. OFDM is utilized to convert the FIR channel into a group of independent parallel subchanneis to carry space-time codes. With the new structure, the performance of space-time coding over downlink wideband correlated fading channels is greatly improved and the system complexity is reduced. Validity of the proposed system is verified by simulations under different conditions. Comparison between the new structure and an available structure is made both theoretically and computationslly.展开更多
The effect of correlated fading reduces the performance gain in multi-antenna communications. Diversity combining is a well-known technique to reduce the effect of correlation. But still, it is an open problem to quan...The effect of correlated fading reduces the performance gain in multi-antenna communications. Diversity combining is a well-known technique to reduce the effect of correlation. But still, it is an open problem to quantify as the diversity scheme is more efficient in enhancing the security of cellular multicast network mitigating the effects of correlation. Motivated by this issue, this paper considers a secure wireless multicasting scenario through correlated cellular networks in the presence of multiple eavesdroppers. The selection combining (SC) and switch and stay combining (SSC) techniques are considered in dual arbitrarily correlated Nakagami-m fading channels. The closed-form analytical expressions for the probability of non-zero secrecy multicast capacity and the secure outage probability for multicasting are derived to understand the insight into the effects of correlation on the SC and SSC diversity schemes and to quantify which diversity scheme is more efficient in enhancing the security of correlated multicast networks. The results show that, although the diversity gain reduces the effect of correlation, the diversity gain provided by the SC diversity scheme is more significant in mitigating the effect of correlation compared to the SSC diversity scheme. Due to the selection mechanism of SC diversity, it is more sensitive to the change of SNR of the eavesdropper’s channel compared to the case of the SSC diversity scheme.展开更多
The problem of soft-input so,output ( SISO ) detection for time-varying frequency-selec- tive fading channels is considered. Based on a suitably-designed factor graph and the sum-product al- gorithm, a low-complexit...The problem of soft-input so,output ( SISO ) detection for time-varying frequency-selec- tive fading channels is considered. Based on a suitably-designed factor graph and the sum-product al- gorithm, a low-complexity iterative message passing scheme is proposed for joint channel estima- tion, equalization and decoding. Two kinds of schedules (parallel and serial) are adopted in message updates to produce two algorithms with different latency. The computational complexity per iteration of the proposed algorithms grows only linearly with the channel length, which is a significantly de- crease compared to the optimal maximum a posteriori (MAP) detection with the exponential com- plexity. Computer simulations demonstrate the effectiveness of the proposed schemes in terms of bit error rate performance.展开更多
The additional diversity gain provided by the relays improves the secrecy capacity of communications system significantly. The multiple hops in the relaying system is an important technique to improve this diversity g...The additional diversity gain provided by the relays improves the secrecy capacity of communications system significantly. The multiple hops in the relaying system is an important technique to improve this diversity gain. The development of an analytical mathematical model of ensuring security in multicasting through fading channels incorporating this benefit of multi-hop relaying is still an open problem. Motivated by this issue, this paper considers a secure wireless multicasting scenario employing multi-hop relaying technique over frequency selective Nakagami-m fading channel and develops an analytical mathematical model to ensure the security against multiple eavesdroppers. This mathematical model has been developed based on the closed-form analytical expressions of the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multicasting (SOPM) to ensure the security in the presence of multiple eavesdroppers. Moreover, the effects of the fading parameter of multicast channel, the number of hops and eavesdropper are investigated. The results show that the security in multicasting through Nakagami-m fading channel with multi-hop relaying system is more sensitive to the number of hops and eavesdroppers. The fading of multicast channel helps to improve the secrecy multicast capacity and is not the enemy of security in multicasting.展开更多
In this paper,we study the system performance of mobile edge computing(MEC)wireless sensor networks(WSNs)using a multiantenna access point(AP)and two sensor clusters based on uplink nonorthogonal multiple access(NOMA)...In this paper,we study the system performance of mobile edge computing(MEC)wireless sensor networks(WSNs)using a multiantenna access point(AP)and two sensor clusters based on uplink nonorthogonal multiple access(NOMA).Due to limited computation and energy resources,the cluster heads(CHs)offload their tasks to a multiantenna AP over Nakagami-m fading.We proposed a combination protocol for NOMA-MEC-WSNs in which the AP selects either selection combining(SC)or maximal ratio combining(MRC)and each cluster selects a CH to participate in the communication process by employing the sensor node(SN)selection.We derive the closed-form exact expressions of the successful computation probability(SCP)to evaluate the system performance with the latency and energy consumption constraints of the considered WSN.Numerical results are provided to gain insight into the system performance in terms of the SCP based on system parameters such as the number of AP antennas,number of SNs in each cluster,task length,working frequency,offloading ratio,and transmit power allocation.Furthermore,to determine the optimal resource parameters,i.e.,the offloading ratio,power allocation of the two CHs,and MEC AP resources,we proposed two algorithms to achieve the best system performance.Our approach reveals that the optimal parameters with different schemes significantly improve SCP compared to other similar studies.We use Monte Carlo simulations to confirm the validity of our analysis.展开更多
The influence of pulse repetition frequency(PRF) on performance of wireless digital time hopping spread spectrum(THSS) ultrawide bandwidth(UWB) radio systems with PPM in dense multipath fading environments is firstly ...The influence of pulse repetition frequency(PRF) on performance of wireless digital time hopping spread spectrum(THSS) ultrawide bandwidth(UWB) radio systems with PPM in dense multipath fading environments is firstly investigated. The receiver used in this UWB system is a hybrid selection/maximal-ratio combining(H-S/MRC) diversity receiver in which L strongest multipath components out of N multipath diversity branches are selected and combined using maximal-ratio combining. The exact expressions for the bit error rate(BER) of this UWB system are firstly derived by using the virtual branch technique in term of PRF, the number of multipath components selected and combined L, and multipath spread of the channel and then this BER performance is evaluated. With the computer simulation for impulses having different pulse shapes, numerical results show that PRF, as well as pulse shape and the number of multipath diversity branches selected and combined L, has much effect on the BER performance of this UWB system in dense multipath fading environments. As PRF increases, the BER performance of this UWB system is much degraded under the conditions of fixed L and pulse shape.展开更多
Previously proposed differential modulation schemes for time-varying channels may not achieve the full transmit diversity and the maximum Doppler diversity simultaneously. Based on an existing basis expansion model, a...Previously proposed differential modulation schemes for time-varying channels may not achieve the full transmit diversity and the maximum Doppler diversity simultaneously. Based on an existing basis expansion model, a new differential space-time code, which wisely combines interleaver/de-interleaver with traditonal space-time transmitting technique to overcome such limitation, .is presented. Two noncoherent differential decoders, named decision-feedback differential detector (DF-DD) and Viterbi-algorithmbased multiple-symbol-detection differential detector ( MSD-DD), are also derived. We show that our design may recover data symbols with full antenna diversity and the maximum Doppler diversity at high signal-to-noise ratio. System performance is evaluated with simulations.展开更多
An antenna selection algorithm based on large-scale fading between the transmitter and receiver is proposed for the uplink receive antenna selection in distributed multiple-input multiple-output(D-MIMO) systems. By ut...An antenna selection algorithm based on large-scale fading between the transmitter and receiver is proposed for the uplink receive antenna selection in distributed multiple-input multiple-output(D-MIMO) systems. By utilizing the radio access units(RAU) selection based on large-scale fading,the proposed algorithm decreases enormously the computational complexity. Based on the characteristics of distributed systems,an improved particle swarm optimization(PSO) has been proposed for the antenna selection after the RAU selection. In order to apply the improved PSO algorithm better in antenna selection,a general form of channel capacity was transformed into a binary expression by analyzing the formula of channel capacity. The proposed algorithm can make full use of the advantages of D-MIMO systems,and achieve near-optimal performance in terms of channel capacity with low computational complexity.展开更多
The performances of selection cooperation are investigated over asymmetric fading channels where the source-relay and the relay-destination channels experience Nakagami-m and Rayleigh fading,respectively.Decode-and-fo...The performances of selection cooperation are investigated over asymmetric fading channels where the source-relay and the relay-destination channels experience Nakagami-m and Rayleigh fading,respectively.Decode-and-forward(DF)protocol is adopted and the Nth best relay is selected from M available relays.Probability density function(PDF)for the instantaneous signal-to-noise ratio(SNR)at the destination is derived first.Then,it is used to derive the exact expressions for outage probability and average symbol error rate(SER).The results hold for arbitrary M or N.Finally,simulations are carried out to verify the correctness of our theoretical analysis and results show that M and N almost have the same effect on the performance of outage probability and SER.展开更多
Objective:To determine the genetic diversity of Plasmodium(P.)knowlesi isolates from Sabah,Malaysian Borneo and Peninsular Malaysia,targeting the S-type SSU rRNA gene and including aspects of natural selection and hap...Objective:To determine the genetic diversity of Plasmodium(P.)knowlesi isolates from Sabah,Malaysian Borneo and Peninsular Malaysia,targeting the S-type SSU rRNA gene and including aspects of natural selection and haplotype.Methods:Thirty-nine blood samples infected with P.knowlesi were collected in Sabah,Malaysian Borneo and Peninsular Malaysia.The S-type SSU rRNA gene was amplified using polymerase chain reaction,cloned into a vector,and sequenced.The natural selection and haplotype of the S-type SSU rRNA gene sequences were determined using DnaSP v6 and illustrated using NETWORK v10.This study's 39 S-type SSU rRNA sequences and eight sequences from the Genbank database were subjected to phylogenetic analysis using MEGA 11.Results:Overall,the phylogenetic analysis showed no evidence of a geographical cluster of P.knowlesi isolates from different areas in Malaysia based on the S-type SSU rRNA gene sequences.The S-type SSU rRNA gene sequences were relatively conserved and with a purifying effect.Haplotype sharing of the S-type SSU rRNA gene was observed between the P.knowlesi isolates in Sabah,Malaysian Borneo,but not between Sabah,Malaysian Borneo and Peninsular Malaysia.Conclusions:This study suggests that the S-type SSU rRNA gene of P.knowlesi isolates in Sabah,Malaysian Borneo,and Peninsular Malaysia has fewer polymorphic sites,representing the conservation of the gene.These features make the S-type SSU rRNA gene suitable for comparative studies,such as determining the evolutionary relationships and common ancestry among P.knowlesi species.展开更多
Diversity reception of multipath Global Navigation Satellte System(GNSS)signals offers a new insight into carrier phase-based high-precision positioning.The focus of this paper is to demonstrate the fading independenc...Diversity reception of multipath Global Navigation Satellte System(GNSS)signals offers a new insight into carrier phase-based high-precision positioning.The focus of this paper is to demonstrate the fading independence between space and frequency diversity GNSS signals.In harsh urban environments,multipath components arrive to the mobile receiver antenna with different phases and Doppler shifts,therefore giving rise to the discontinuity of code and Doppler observations and large tracking errors.In this paper,an empirical model of fading GNSS signals is constructed,including power fluctuations and spread metrics.Based on this model,real BeiDou Navigation Satellite System(BDS)signals from two GNSS dual-frequency antennas are characterized,at both information and signal level.The block processing algorithm is utilized for signal investigation.Results show that:(1)a high proportion of asynchronous loss-of-lock(around 16%)is experienced by observations of diversity signals;and(2)power fluctuations of fading signals are uncorrelated in frequency separated branches unconditionally,yet for space diversity signals the independency exists in dynamic fading channels only.The results above corroborate the significant potential gain of diversity reception,and could be further implemented in researches of diversity combined GNSS parameter estimation in dense fading conditions.展开更多
The community characteristics of natural secondary forests on the north slope of Changbai Mountain after selective cutting were investigated, and the dynamics of arborous species diversity during the restoration perio...The community characteristics of natural secondary forests on the north slope of Changbai Mountain after selective cutting were investigated, and the dynamics of arborous species diversity during the restoration period of 28 years were studied. The results showed that the arborous species richness (S) had little change and kept the range of 18-22 all along, the Simpson index (D) of the secondary layer and regeneration layer and whole stand had similar trends of change, but that of the canopy layer descended slowly in initial 15 years and had little change later, and the change of diversity index was not obvious and the Shannon-Wiener index (H? fluctuated in a very small scopes (H±10%).展开更多
The performance of transmit diversity (TD) assisted amplify-and-forward (AF) relay system with partial relay selection, which experiences mixed Rayleigh and Rician fading channels, is investigated. We first invest...The performance of transmit diversity (TD) assisted amplify-and-forward (AF) relay system with partial relay selection, which experiences mixed Rayleigh and Rician fading channels, is investigated. We first investigate the closed-form expression of the cumulative distribution function for the end-to-end equivalent signal-to-noise ratio (SNR), and then the exact expressions of outage probability and average symbol error probability (SEP) are derived. The theoretical observations are verified by the Monte Carlo simulation results.展开更多
基金Supported by the National Natural Science Foundation of China (No.60372107).
文摘A novel cooperative diversity scheme based on Distributed Space-Time Block Coding and Multi-Carrier Code Division Multiple Access (DSTBC-MC-CDMA) is proposed which works well in frequency selective fading channels with multiple single-antenna users. And an analytical error model is established to describe the symbol decoding errors between interusers, based on which a close form expression for theoretical Bit Error Rate (BER) performance of the scheme is derived to analyze the influence of the interuser decoding errors on the BER performance of the scheme. Then simulation is complimented to verify the analytic result above, which also shows that the BER performance of DSTBC-MC-CDMA outgoes that of non-cooperative MC-CDMA with considerable gains. Further- more, the simulations coincide with the theoretical results well.
文摘In this paper, a new observation equation of non-Gaussian frequency selective fading Bell Labs layered space time (BLAST) architecture system is proposed, which is used for frequency selective fading channels and non-Gaussian noise in an application environment of BLAST system. With othogonal matrix triangularization (QR decomposition) of the channel matrix, the static observation equation of frequency selective fading BLAST system is transformed into a dynamic state space model, and then the particle filter is used for space-time layered detection. Making the full use of the finite alphabet of the digital modulation communication signal, the optimal proposal distribution can be chosen to produce particle and update the weight. Incorporated with current method of reducing error propagation, a new space-time layered detection algorithm is proposed. Simulation result shows the validity of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(No.61002017 and No.61072076)the STCSM and Shanghai Rising-Star Program(10JC1414400)
文摘In this paper,using cyclostationarity-based sensing method to detect the presence of Orthogonal Frequency Division Multiplexing(OFDM) signal over doubly-selective fading channels is studied.By approximating the channel with Basis Expansion Model(BEM),we derive the second-order cyclostationary statistics of the received OFDM signal over doubly-selective fading channels.Theoretical analysis indicates that new cyclostationary signatures produced by Doppler spread and multipath delay can be further exploited in the detecting process.Simulation examples demonstrate that the sensing methods using channel-induced cyclostationary features provide substantial improvements on detection performance.
文摘The performance analysis, using outage capacity for a forward link cellular communications system is presented. The effects of correlated fading, the distribution of angle of arrivals, and the array configurations are considered. The objective is to examine the effect of angle of arrival (AOA) energy distributions on two systems (transmit diversity and beamforming) with angle spread. We do so by comparing the performance of transmit diversity with a system that uses beamforming to point a relatively narrow beam at the mobile station. Analytical results show that the transmit diversity system using uniform linear arrays (ULA) and uniform circular arrays (UCA) with truncated Laplacian AOA, performs better even at smaller angle spreads as compared to other energy distributions. The ULA geometry is a preferable configuration for transmit diversity system as compared to UCA.
基金National Natural Science Foundation of China(No.62071146).
文摘We analyze the performance of a twoway satellite-terrestrial decode-and-forward(DF) relay network over non-identical fading channels.In particular,selective physical-layer network coding(SPNC) is employed in the proposed network to improve the average end-to-end throughput performance.More specifically,by assuming that the DF relay performs instantaneous throughput comparisons before performing corresponding protocols,we derive the expressions of system instantaneous bit-error-rate(BER),instantaneous end-to-end throughput,average end-to-end throughput,single node detection(SND)occurrence probability and average end-to-end BER over non-identical fading channels.Finally,theoretical analyses and Monte Carlo simulation results are presented.Evaluations show that:1) SPNC protocol outperforms the conventional physical-layer network coding(PNC) protocol in infrequent light shadowing(ILS),average shadowing(AS) and frequent heavy shadowing(FHS) Shadowed-Rician fading channels.2) As the satellite-relay channel fading gets more sewere,SPNC protocol can achieve more performance improvement than PNC protocol and the occurrence probability of SND protocol increases progressively.3) The occurrence probability increase of SND has a beneficial effect on the average end-to-end throughput in low signal-to-noise ratio(SNR) regime,while the occurrence probability decrease of SND has a beneficial effect on the average end-to-end BER in highSNR regime.
文摘This paper represents a comparative performance evaluation of different diversity combining techniques for a SIMO-OFDM (single-input-multiple-output orthogonal frequency division multiplexing) system over Rayleigh fading channel. OFDM is a key technique for achieving high data rates and spectral efficiency requirements for wireless communication systems. But in scattering environment, the system performances are severely degraded by the effects of multipath fading and inter-symbol interference. In wireless communication systems, antenna diversity is an important technique to combat multipath fading in order to improve the system performance and increase the channel capacity. In this paper, the performance of different diversity combining techniques-SC (selection combining), EGC (equal gain combining) and MRC (maximal ratio combining) has been analyzed and compared in terms of SNR (signal to noise ratio) and BER (bit error rate) probability. The simulation results show that the maximal ratio combining technique provides maximum performance improvement relative to all other combining schemes by maximizing the SNR of SIMO-OFDM system at the combiner output. The analytic expressions of error probability and effective bit energy to noise ratio correlated with BPSK (binary phase shift keying) modulation have been derived and formulated for N-branch SC, EGC and MRC schemes. The BER characteristics for all three combining techniques are simulated in MATLAB (matrix laboratory) tool box for varying bit energy to noise ratio. Our results also derives that SNR can be improved if the number of receiving antenna is increased, which in turn reduces BER over a Rayleigh fading channel.
基金Project supported by National Natural Science Foundation ofChina (Grant No .60172028) ,Natural Science Foundation ofShanxi Province(Grant No .2004F45)
文摘To improve the performance of space-time coding over downlink frequency-selective correlated fading channels, a novel transmission scheme combining eigenbeamfoming and OFDM is proposed. Provided that the channel correlated statistics are available at the transmitter, the wideband correlated fading channels can be converted into an independent FIR channel with 2 transmitting antennas and N receiving antennas by eigenbeamforming and dimension reduction. OFDM is utilized to convert the FIR channel into a group of independent parallel subchanneis to carry space-time codes. With the new structure, the performance of space-time coding over downlink wideband correlated fading channels is greatly improved and the system complexity is reduced. Validity of the proposed system is verified by simulations under different conditions. Comparison between the new structure and an available structure is made both theoretically and computationslly.
文摘The effect of correlated fading reduces the performance gain in multi-antenna communications. Diversity combining is a well-known technique to reduce the effect of correlation. But still, it is an open problem to quantify as the diversity scheme is more efficient in enhancing the security of cellular multicast network mitigating the effects of correlation. Motivated by this issue, this paper considers a secure wireless multicasting scenario through correlated cellular networks in the presence of multiple eavesdroppers. The selection combining (SC) and switch and stay combining (SSC) techniques are considered in dual arbitrarily correlated Nakagami-m fading channels. The closed-form analytical expressions for the probability of non-zero secrecy multicast capacity and the secure outage probability for multicasting are derived to understand the insight into the effects of correlation on the SC and SSC diversity schemes and to quantify which diversity scheme is more efficient in enhancing the security of correlated multicast networks. The results show that, although the diversity gain reduces the effect of correlation, the diversity gain provided by the SC diversity scheme is more significant in mitigating the effect of correlation compared to the SSC diversity scheme. Due to the selection mechanism of SC diversity, it is more sensitive to the change of SNR of the eavesdropper’s channel compared to the case of the SSC diversity scheme.
基金Supported by the National Natural Science Foundation of China(61201181)Specialized Research Fund for the Doctoral Program of Higher Education(20121101120020)the Co-innovation Laboratory of Aerospace Broadband Network Technology
文摘The problem of soft-input so,output ( SISO ) detection for time-varying frequency-selec- tive fading channels is considered. Based on a suitably-designed factor graph and the sum-product al- gorithm, a low-complexity iterative message passing scheme is proposed for joint channel estima- tion, equalization and decoding. Two kinds of schedules (parallel and serial) are adopted in message updates to produce two algorithms with different latency. The computational complexity per iteration of the proposed algorithms grows only linearly with the channel length, which is a significantly de- crease compared to the optimal maximum a posteriori (MAP) detection with the exponential com- plexity. Computer simulations demonstrate the effectiveness of the proposed schemes in terms of bit error rate performance.
文摘The additional diversity gain provided by the relays improves the secrecy capacity of communications system significantly. The multiple hops in the relaying system is an important technique to improve this diversity gain. The development of an analytical mathematical model of ensuring security in multicasting through fading channels incorporating this benefit of multi-hop relaying is still an open problem. Motivated by this issue, this paper considers a secure wireless multicasting scenario employing multi-hop relaying technique over frequency selective Nakagami-m fading channel and develops an analytical mathematical model to ensure the security against multiple eavesdroppers. This mathematical model has been developed based on the closed-form analytical expressions of the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multicasting (SOPM) to ensure the security in the presence of multiple eavesdroppers. Moreover, the effects of the fading parameter of multicast channel, the number of hops and eavesdropper are investigated. The results show that the security in multicasting through Nakagami-m fading channel with multi-hop relaying system is more sensitive to the number of hops and eavesdroppers. The fading of multicast channel helps to improve the secrecy multicast capacity and is not the enemy of security in multicasting.
基金supported in part by Thailand Science Research and Innovation(TSRI)and National Research Council of Thailand(NRCT)via International Research Network Program(IRN61W0006)Thailand+1 种基金by Khon Kaen University,ThailandDuy Tan University,Vietnam。
文摘In this paper,we study the system performance of mobile edge computing(MEC)wireless sensor networks(WSNs)using a multiantenna access point(AP)and two sensor clusters based on uplink nonorthogonal multiple access(NOMA).Due to limited computation and energy resources,the cluster heads(CHs)offload their tasks to a multiantenna AP over Nakagami-m fading.We proposed a combination protocol for NOMA-MEC-WSNs in which the AP selects either selection combining(SC)or maximal ratio combining(MRC)and each cluster selects a CH to participate in the communication process by employing the sensor node(SN)selection.We derive the closed-form exact expressions of the successful computation probability(SCP)to evaluate the system performance with the latency and energy consumption constraints of the considered WSN.Numerical results are provided to gain insight into the system performance in terms of the SCP based on system parameters such as the number of AP antennas,number of SNs in each cluster,task length,working frequency,offloading ratio,and transmit power allocation.Furthermore,to determine the optimal resource parameters,i.e.,the offloading ratio,power allocation of the two CHs,and MEC AP resources,we proposed two algorithms to achieve the best system performance.Our approach reveals that the optimal parameters with different schemes significantly improve SCP compared to other similar studies.We use Monte Carlo simulations to confirm the validity of our analysis.
文摘The influence of pulse repetition frequency(PRF) on performance of wireless digital time hopping spread spectrum(THSS) ultrawide bandwidth(UWB) radio systems with PPM in dense multipath fading environments is firstly investigated. The receiver used in this UWB system is a hybrid selection/maximal-ratio combining(H-S/MRC) diversity receiver in which L strongest multipath components out of N multipath diversity branches are selected and combined using maximal-ratio combining. The exact expressions for the bit error rate(BER) of this UWB system are firstly derived by using the virtual branch technique in term of PRF, the number of multipath components selected and combined L, and multipath spread of the channel and then this BER performance is evaluated. With the computer simulation for impulses having different pulse shapes, numerical results show that PRF, as well as pulse shape and the number of multipath diversity branches selected and combined L, has much effect on the BER performance of this UWB system in dense multipath fading environments. As PRF increases, the BER performance of this UWB system is much degraded under the conditions of fixed L and pulse shape.
基金Supported bv the National Nature Science Foundation of China ( No. 603905405 ). and the National High Teehnology Research & Development Program of China (No. 2003AA12331005).
文摘Previously proposed differential modulation schemes for time-varying channels may not achieve the full transmit diversity and the maximum Doppler diversity simultaneously. Based on an existing basis expansion model, a new differential space-time code, which wisely combines interleaver/de-interleaver with traditonal space-time transmitting technique to overcome such limitation, .is presented. Two noncoherent differential decoders, named decision-feedback differential detector (DF-DD) and Viterbi-algorithmbased multiple-symbol-detection differential detector ( MSD-DD), are also derived. We show that our design may recover data symbols with full antenna diversity and the maximum Doppler diversity at high signal-to-noise ratio. System performance is evaluated with simulations.
基金Supported by the National Natural Science Foundation of China(No.61201086,61272495)the China Scholarship Council(No.201506375060)+1 种基金the Planned Science and Technology Project of Guangdong Province(No.2013B090500007) the Dongguan Project on the Integration of Industry,Education and Research(No.2014509102205)
文摘An antenna selection algorithm based on large-scale fading between the transmitter and receiver is proposed for the uplink receive antenna selection in distributed multiple-input multiple-output(D-MIMO) systems. By utilizing the radio access units(RAU) selection based on large-scale fading,the proposed algorithm decreases enormously the computational complexity. Based on the characteristics of distributed systems,an improved particle swarm optimization(PSO) has been proposed for the antenna selection after the RAU selection. In order to apply the improved PSO algorithm better in antenna selection,a general form of channel capacity was transformed into a binary expression by analyzing the formula of channel capacity. The proposed algorithm can make full use of the advantages of D-MIMO systems,and achieve near-optimal performance in terms of channel capacity with low computational complexity.
基金Supported by the National Natural Science Foundation of China(No.6087024)the Cultivation Fund of the Key Scientific and Technical Innovation Project(No.708059)+2 种基金Open Found of State Key Laboratory of Integrated Services Networks(No.ISN12-10)Open Research Fund of National Mobile Communications Research Laboratory(No.2012D10)the Natural Science Foundation of Shandong Province(No.ZR2011FM027)
文摘The performances of selection cooperation are investigated over asymmetric fading channels where the source-relay and the relay-destination channels experience Nakagami-m and Rayleigh fading,respectively.Decode-and-forward(DF)protocol is adopted and the Nth best relay is selected from M available relays.Probability density function(PDF)for the instantaneous signal-to-noise ratio(SNR)at the destination is derived first.Then,it is used to derive the exact expressions for outage probability and average symbol error rate(SER).The results hold for arbitrary M or N.Finally,simulations are carried out to verify the correctness of our theoretical analysis and results show that M and N almost have the same effect on the performance of outage probability and SER.
基金This study was supported by the Ministry of Higher Education,Malaysia(FRGS0322-SG-1/2013)Universiti Malaysia Sabah(GUG0521-2/2020).
文摘Objective:To determine the genetic diversity of Plasmodium(P.)knowlesi isolates from Sabah,Malaysian Borneo and Peninsular Malaysia,targeting the S-type SSU rRNA gene and including aspects of natural selection and haplotype.Methods:Thirty-nine blood samples infected with P.knowlesi were collected in Sabah,Malaysian Borneo and Peninsular Malaysia.The S-type SSU rRNA gene was amplified using polymerase chain reaction,cloned into a vector,and sequenced.The natural selection and haplotype of the S-type SSU rRNA gene sequences were determined using DnaSP v6 and illustrated using NETWORK v10.This study's 39 S-type SSU rRNA sequences and eight sequences from the Genbank database were subjected to phylogenetic analysis using MEGA 11.Results:Overall,the phylogenetic analysis showed no evidence of a geographical cluster of P.knowlesi isolates from different areas in Malaysia based on the S-type SSU rRNA gene sequences.The S-type SSU rRNA gene sequences were relatively conserved and with a purifying effect.Haplotype sharing of the S-type SSU rRNA gene was observed between the P.knowlesi isolates in Sabah,Malaysian Borneo,but not between Sabah,Malaysian Borneo and Peninsular Malaysia.Conclusions:This study suggests that the S-type SSU rRNA gene of P.knowlesi isolates in Sabah,Malaysian Borneo,and Peninsular Malaysia has fewer polymorphic sites,representing the conservation of the gene.These features make the S-type SSU rRNA gene suitable for comparative studies,such as determining the evolutionary relationships and common ancestry among P.knowlesi species.
文摘Diversity reception of multipath Global Navigation Satellte System(GNSS)signals offers a new insight into carrier phase-based high-precision positioning.The focus of this paper is to demonstrate the fading independence between space and frequency diversity GNSS signals.In harsh urban environments,multipath components arrive to the mobile receiver antenna with different phases and Doppler shifts,therefore giving rise to the discontinuity of code and Doppler observations and large tracking errors.In this paper,an empirical model of fading GNSS signals is constructed,including power fluctuations and spread metrics.Based on this model,real BeiDou Navigation Satellite System(BDS)signals from two GNSS dual-frequency antennas are characterized,at both information and signal level.The block processing algorithm is utilized for signal investigation.Results show that:(1)a high proportion of asynchronous loss-of-lock(around 16%)is experienced by observations of diversity signals;and(2)power fluctuations of fading signals are uncorrelated in frequency separated branches unconditionally,yet for space diversity signals the independency exists in dynamic fading channels only.The results above corroborate the significant potential gain of diversity reception,and could be further implemented in researches of diversity combined GNSS parameter estimation in dense fading conditions.
基金This research was supported by Institute of Shenyang Applied Ecology CAS (SCXMS0101),National Key Technologies R&D Program (NKTRDP. 2002BA516A20) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education
文摘The community characteristics of natural secondary forests on the north slope of Changbai Mountain after selective cutting were investigated, and the dynamics of arborous species diversity during the restoration period of 28 years were studied. The results showed that the arborous species richness (S) had little change and kept the range of 18-22 all along, the Simpson index (D) of the secondary layer and regeneration layer and whole stand had similar trends of change, but that of the canopy layer descended slowly in initial 15 years and had little change later, and the change of diversity index was not obvious and the Shannon-Wiener index (H? fluctuated in a very small scopes (H±10%).
基金supported by China Important National Science and Technology Specific Projects (2009ZX03007-003-01)Sino-Finland International Cooperation Program of MOST (2010DFB10410)
文摘The performance of transmit diversity (TD) assisted amplify-and-forward (AF) relay system with partial relay selection, which experiences mixed Rayleigh and Rician fading channels, is investigated. We first investigate the closed-form expression of the cumulative distribution function for the end-to-end equivalent signal-to-noise ratio (SNR), and then the exact expressions of outage probability and average symbol error probability (SEP) are derived. The theoretical observations are verified by the Monte Carlo simulation results.