We design a grey wolf optimizer hybridized with an interior point algorithm to correct a faulty antenna array. If a single sensor fails, the radiation power pattern of the entire array is disturbed in terms of sidelob...We design a grey wolf optimizer hybridized with an interior point algorithm to correct a faulty antenna array. If a single sensor fails, the radiation power pattern of the entire array is disturbed in terms of sidelobe level(SLL) and null depth level(NDL), and nulls are damaged and shifted from their original locations. All these issues can be solved by designing a new fitness function to reduce the error between the preferred and expected radiation power patterns and the null limitations. The hybrid algorithm has been designed to control the array's faulty radiation power pattern. Antenna arrays composed of 21 sensors are used in an example simulation scenario. The MATLAB simulation results confirm the good performance of the proposed method, compared with the existing methods in terms of SLL and NDL.展开更多
The unmanned aerial vehicles( UAV) has been becoming more and more important in the aviation industry.Despite the superior performance and advanced technology,major accident of UAV happens frequently due to the impact...The unmanned aerial vehicles( UAV) has been becoming more and more important in the aviation industry.Despite the superior performance and advanced technology,major accident of UAV happens frequently due to the impact of their systems,long distance of remote control and skill of manipulator technology.According to the application of engineering application,failure mode effects and criticality analysis( FMECA),failure reporting analysis and corrective action comprehensive analysis systems( FRACAS)and fault tree analysis( FTA)( 3 F) were combined.And also a set of user-friendly,more time,more efficient and accurate reliability analysis system were explored.展开更多
基金supported by the Ministry of Higher Education(MOHE)the Research Management Centre(RMC)+2 种基金the School of Postgraduate Studies(SPS)the Communication Engineering Department,the Faculty of Electrical Engineering(FKE)Universiti T¨ekùnolóogi Malaysia(UTM)Johor Bahru(Nos.12H09 and 03E20tan)
文摘We design a grey wolf optimizer hybridized with an interior point algorithm to correct a faulty antenna array. If a single sensor fails, the radiation power pattern of the entire array is disturbed in terms of sidelobe level(SLL) and null depth level(NDL), and nulls are damaged and shifted from their original locations. All these issues can be solved by designing a new fitness function to reduce the error between the preferred and expected radiation power patterns and the null limitations. The hybrid algorithm has been designed to control the array's faulty radiation power pattern. Antenna arrays composed of 21 sensors are used in an example simulation scenario. The MATLAB simulation results confirm the good performance of the proposed method, compared with the existing methods in terms of SLL and NDL.
基金Naional Natural Science Foundntion of China(No.71761030)
文摘The unmanned aerial vehicles( UAV) has been becoming more and more important in the aviation industry.Despite the superior performance and advanced technology,major accident of UAV happens frequently due to the impact of their systems,long distance of remote control and skill of manipulator technology.According to the application of engineering application,failure mode effects and criticality analysis( FMECA),failure reporting analysis and corrective action comprehensive analysis systems( FRACAS)and fault tree analysis( FTA)( 3 F) were combined.And also a set of user-friendly,more time,more efficient and accurate reliability analysis system were explored.