Acoustic emission (AE) technique is a useful tool for investigating rock damage mechanism, and is used to study the temporal-spatial evolution process of microcracks during the similar pillar material experiment. A ...Acoustic emission (AE) technique is a useful tool for investigating rock damage mechanism, and is used to study the temporal-spatial evolution process of microcracks during the similar pillar material experiment. A combined AE location algorithm was developed based on the Least square algorithm and Geiger location algorithm. The pencil break test results show that the location precision can meet the demand of microcrack monitoring. The 3D location of AE events can directly reflect the process of initiation, propagation and evolutionary of microcracks. During the loading process, stress is much likely concentrated on the area between pillar and roof of the specimen, where belongs to danger zone of macroscopic failure. When rock reaches its plastic deformation stage, AE events begin to decrease, which indicates that AE quiet period can be seen as precursor characteristic of rock failure.展开更多
The strength of sandstone decreases significantly with higher water content attributing to softening effects.This scenario can pose a severe threat to the stability of reservoirs of pumped storage power stations devel...The strength of sandstone decreases significantly with higher water content attributing to softening effects.This scenario can pose a severe threat to the stability of reservoirs of pumped storage power stations developed from abandoned mines,especially when subjected to the cyclic loading condition caused by the repeated drainage and storage of water(fatigue damage).Based on this,it is essential to focus on the fatigue failure characteristics.In this study,the mineral composition of the used sandstone of Ruineng coal mine in Shanxi Province,China,was first tested to elucidate the rock softening mechanism after absorbing water.Next,a numerical model for replicating the mechanical behavior of water-bearing sandstone was established using twodimensional particle flow code(PFC2D)with a novel contact model.Then,16 uniaxial cyclic loading simulations with distinct loading parameters related to reservoir conditions(loading frequency,amplitude level,and maximum stress level)and different water contents were conducted.The numerical results show that all these three loading parameters affect the failure characteristics of sandstone,including irreversible strain,damage evolution,strain behavior,and fatigue life.The influence degree of these three parameters on failure behavior increases in the order of maximum stress level,loading frequency,and amplitude level.However,for the samples with different water contents,their failure characteristics are similar under the same loading conditions.Furthermore,the failure mode is almost unaffected by the loading parameters,while the water content plays a significant role and causing the transformation from the tensile splitting with low water content to the shear failure with higher water content.展开更多
Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson b...Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson bar was employed to explore the dynamic mechanical behaviors of coal at different confining pressures(0–20 MPa)and strain rates(40–220 s^(-1)).The results show that the dynamic peak stress is positively correlated with lateral static pre-stressσy andσz,but negatively correlated with axial static prestressσx.At approximate strain rates,increasing the lateral static pre-stress facilitates increasing the dynamic peak stress,but the minimum lateral static pre-stress is the primary factor limiting a significant increase in dynamic peak stress of coal.Furthermore,the dynamic differential stress is linearly related to the logarithm of strain rate,and the peak strain varies linearly with strain rate.However,there is no significant correlation between confining pressure and peak strain.Moreover,X-ray CT images and photographic fracture observations of coal samples show the failure patterns under uniaxial and triaxial conditions are splitting failure and shear failure,respectively.The device provides a viable approach for fully comprehending the dynamic mechanical behaviors of rock-like material in complex stress conditions.展开更多
Bedding rock slopes are common geological features in nature that are prone to failure under strong earthquakes. Their failures induce catastrophic landslides and form barrier lakes, posing severe threats to people’s...Bedding rock slopes are common geological features in nature that are prone to failure under strong earthquakes. Their failures induce catastrophic landslides and form barrier lakes, posing severe threats to people’s lives and property. Based on the similarity criteria, a bedding rock slope model with a length of3 m, a width of 0.8 m, and a height of 1.6 m was constructed to facilitate large-scale shaking table tests.The results showed that with the increase of vibration time, the natural frequency of the model slope decreased, but the damping ratio increased. Damage to the rock mass structure altered the dynamic characteristics of the slope;therefore, amplification of the acceleration was found to be nonlinear and uneven. Furthermore, the acceleration was amplified nonlinearly with the increase of slope elevation along the slope surface and the vertical section, and the maximum acceleration amplification factor(AAF) occurred at the slope crest. Before visible deformation, the AAF increased with increasing shaking intensity;however, it decreased with increasing shaking intensity after obvious deformation. The slope was likely to slide along the bedding planes at a shallow depth below the slope surface. The upper part of the slope mainly experienced a tensile-shear effect, whereas the lower part suffered a compressive-shear force. The progressive failure process of the model slope can be divided into four stages, and the dislocated rock mass can be summarized into three zones. The testing data provide a good explanation of the dynamic behavior of the rock slope when subjected to an earthquake and may serve as a helpful reference in implementing antiseismic measures for earthquake-induced landslides.展开更多
Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fract...Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fractured sandstone under different conditions of anchorage. The experimental results show that the strength and elastic modulus of fractured sandstone with different fracture angles are significantly lower than those of intact sandstone. Compared with the fractured samples without anchorage,the peak strength, residual strength, peak and ultimate axial strain of fractured sandstone under different anchorage increase by 64.5–320.0%, 62.8–493.0%, and 31.6–181.4%, respectively. The number of bolts and degree of pre-stress has certain effects on the peak strength and failure model of fractured sandstone. The peak strength of fractured sandstone under different anchorage increases to some extent, and the failure model of fractured sandstone also transforms from tensile failure to tensile–shear mixed failure with the number of bolts. The pre-stress can restrain the formation and evolution process of tensile cracks, delay the failure process of fractured sandstone under anchorage and impel the transformation of failure model from brittle failure to plastic failure.展开更多
Based on data from through-hole and logging,we studied the failure characteristics of surface drainage wells for relieved coal gas in Huainan mining area and its influencing factors.The results show that the damaged p...Based on data from through-hole and logging,we studied the failure characteristics of surface drainage wells for relieved coal gas in Huainan mining area and its influencing factors.The results show that the damaged positions of drainage wells are mainly located at the thick clay layer in the low alluvium and the lithological interface in the upper section of bedrock in west mining area.The failure depth of casing is 244-670 m and concentrates at about 270-460 m deep.These damaged positions are mainly located in the bending zone according to three zones of rock layers in the vertical section above the roof divided. Generally,the casing begins to deform or damage before the face line about 30-150 m.Special formation structure and rock mass properties are the direct causes of the casing failure,high mining height and fast advancing speed are fundamental reasons for rock mass damage.However,the borehole configuration and spacing to the casing failure are not very clear.展开更多
Using self-made impact fatigue test instruments and related analytic devices,the mechanical components with laser cladding layer have been attempted. It is found that, onrepeated impact force, several failure modes of...Using self-made impact fatigue test instruments and related analytic devices,the mechanical components with laser cladding layer have been attempted. It is found that, onrepeated impact force, several failure modes of the components include the surface cracks, surfaceplastic deformation, corrosive pitting and coat collapse, etc. The paper reported the test methodand initial analysis conclusions about the unique failure characteristics of the mechanicalcomponents on repeated impact load.展开更多
To study the influence of axial stress on the failure characteristics of deep arched roadway considering structural effect,true triaxial compression tests were conducted on cubic granite specimens with a three-centere...To study the influence of axial stress on the failure characteristics of deep arched roadway considering structural effect,true triaxial compression tests were conducted on cubic granite specimens with a three-centered arched hole structure.A video monitoring device was utilized to record the failure process of surrounding rocks.The test results show that under 10−60 MPa axial stress,the surrounding rock failure process included the calm stage,particle ejection stage,fragment ejection stage,and rock slice buckling and spalling stage.Under higher axial stresses(70 and 80 MPa),the failure process is characterized by violent fragment spray during the fourth stage.As the axial stress increases,the failure of surrounding rock increases,while the initial vertical failure stress first increases and then decreases.According to the failure characteristics of roadway under different axial stresses,arranging the roadway along the direction of a moderate axial stress level is desired.展开更多
An extra-large landslide occurred on June 19,2021,on the footwall slope of the Nanfen Open-pit Iron Mine in Liaoning Province,China,with a volume of approximately 1.2×107 m3.To elucidate the causative factors,dev...An extra-large landslide occurred on June 19,2021,on the footwall slope of the Nanfen Open-pit Iron Mine in Liaoning Province,China,with a volume of approximately 1.2×107 m3.To elucidate the causative factors,development process,and destructive mechanisms of this catastrophic landslide,comprehensive field tests,investigations,and laboratory experiments were conducted.Initially,the heavily weathered rock mass of the slope was intersected by faults and joint fissures,facilitating rainwater infiltration.Moreover,the landslide contained a substantial clay mineral with highly developed micro-cracks and micro-pores,exhibiting strong water-absorption properties.As moisture content increased,the rock mass underwent softening,resulting in reduced strength.Ultimately,continuous heavy rainfall infiltration amplified the slope's weight,diminishing the weak structural plane's strength,leading to fracture propagation,slip plane penetration,and extensive tensile-shear and uplift failure of the slope.The study highlights poor geological conditions as the decisive factor for this landslide,with continuous heavy rainfall as the triggering factor.Presently,adverse environmental factors persistently affect the landslide,and deformation and failure continue to escalate.Hence,it is imperative to urgently implement integrated measures encompassing slope reinforcement,monitoring,and early-warning to real-time monitor the landslide's deformation and deep mechanical evolution trends.展开更多
To study the dynamic mechanical properties and failure characteristics of intersecting jointed rock masses with different joint distributions under confining pressure,considering the cross angleαand joint persistence...To study the dynamic mechanical properties and failure characteristics of intersecting jointed rock masses with different joint distributions under confining pressure,considering the cross angleαand joint persistence ratioη,a numerical model of the biaxial Hopkinson bar test system was established using the finite element method–discrete-element model coupling method.The validity of the model was verified by comparing and analyzing it in conjunction with laboratory test results.Dynamics-static combined impact tests were conducted on specimens under various conditions to investigate the strength characteristics and patterns of crack initiation and expansion.The study revealed the predominant factors influencing intersecting joints with different angles and penetrations under impact loading.The results show that the peak stress of the specimens decreases first and then increases with the increase of the cross angle.Whenα<60°,regardless of the value ofη,the dynamic stress of the specimens is controlled by the main joint.Whenα≥60°,the peak stress borne by the specimens decreases with increasingη.Whenα<60°,the initiation and propagation of cracks in the cross-jointed specimens are mainly controlled by the main joint,and the final failure surface of the specimens is composed of the main joint and wing cracks.Whenα≥60°orη≥0.67,the secondary joint guides the expansion of the wing cracks,and multiple failure surfaces composed of main and secondary joints,wing cracks,and co-planar cracks are formed.Increasing lateral confinement significantly increases the dynamic peak stress able to be borne by the specimens.Under triaxial conditions,the degree of failure of the intersecting jointed specimens is much lower than that under uniaxial and biaxial conditions.展开更多
The failure modes of rock after roadway excavation are diverse and complex.A comprehensive investigation of the internal stress field and the rotation behavior of the stress axis in roadways is essential for elucidati...The failure modes of rock after roadway excavation are diverse and complex.A comprehensive investigation of the internal stress field and the rotation behavior of the stress axis in roadways is essential for elucidating the mechanism of roadway failure.This study aimed to examine the spatial relationship between roadways and stress fields.The law of stress axis rotation under three-dimensional(3D)stress has been extensively studied.A stress model of roadways in the spatial stress field was established,and the far-field stress state at different spatial positions of the roadways was analyzed.A mechanical model of roadways under a 3D stress state was established using far-field stress solutions as boundary conditions.The distribution of principal stressesσ1,σ2 andσ3 around the roadways and the variation of the stress principal axis were solved.It was found that the stability boundary of the stress principal axis exhibits hysteresis when compared with that of the principal stress magnitudes.A numerical analysis model for spatial roadways was established to validate the distribution of principal stress and the mechanism of principal axis rotation.Research has demonstrated that the stress axis undergoes varying degrees of spatial rotation in different orientations and radial depths.Based on the distribution of principal stress and the rotation law of the stress principal axis,the entire evolution mechanism of the two stress adjustments to form the final failure form after roadway excavation has been revealed.The on-site detection results also corroborate the findings presented in this paper.The results provide a basis for the analysis of the failure mechanism under a 3D stress state.展开更多
Ascending mining is one of the most effective ways to solve problems of water inrush, gas outburst and rock burst in coal seams mining. In order to reveal the law of motion and spatiotemporal relationship of overlayin...Ascending mining is one of the most effective ways to solve problems of water inrush, gas outburst and rock burst in coal seams mining. In order to reveal the law of motion and spatiotemporal relationship of overlaying strata, field measurement has been done in a mine. Long distance drillings were constructed from 4# coal seam to 6# coal seam at several certain typical positions, and movement and failure law of overlying strata after mining was analyzed by drilling video and observing the fluid leakage. Besides, we also analyzed the spatiotemporal development law of overlying strata failure with different mining heights and time intervals in the lower coal seam. The results show that: ascending mining is significantly affected by time-domain characteristics of overlaying strata failure after the lower coal seam's mining, height equations of caving zone and fractured zone are given in this paper, and the feasibility of ascending mining was compartmentalized concretely according to the spatiotemporal relationship. Research methods and conclusions of this paper have certain referential significance for the study of ascending mining, mining under water, mining under building, mining under railway and stress-relief mining.展开更多
Based on the first unde rwater railway shield tunnel, the Shiziyang shield tunnel of Guangzhou Zhu- jiang River, the prototype test was carried out against its segmental lining structure by using "multi-function shie...Based on the first unde rwater railway shield tunnel, the Shiziyang shield tunnel of Guangzhou Zhu- jiang River, the prototype test was carried out against its segmental lining structure by using "multi-function shield tunnel structure test system". And the mechanical characteristics of segmental lining structure using straight assembling and staggered assembling were studied deeply. The results showed that, the mechanical characteristics of segmental lining structure varied with the water pressures; especially after cracking, the high water pressure played a significant role in slowing down the growing inner force and deformation. It also testi- fied that the failure characteristics varied with straight assembling structure and staggered assembling structure. Shear thilurc often occurred near longitudinal seam when using straight assembling.展开更多
Deformation characteristics and constitutive model of seafloor massive sulfide(SMS)were selected as the research object.Uniaxial/triaxial compression test were carried out on the mineral samples,and the deformation ch...Deformation characteristics and constitutive model of seafloor massive sulfide(SMS)were selected as the research object.Uniaxial/triaxial compression test were carried out on the mineral samples,and the deformation characteristics of specimens under various conditions were studied.According to characteristics of the mineral,a new three stages constitutive equation was proposed.The conclusions are as follows:The axial strain,peak strain and maximum strength of seafloor massive sulfide increase with the confining pressure.The elastic modulus of the metal sulfide samples is decreased sharply with the increase of confining pressure.According to characteristics of seafloor massive sulfide,the constitutive equation is divided into three parts,the comparison between theoretical curves and experimental data shows that both of them are in good agreement,which also proves the correctness of the constitutive equation for uniaxial compression.展开更多
The hydrostatic or confining pressure of deep rocks has a significant impact on the mechanical behavior of brittle materials.Especially when confining pressure is applied,the mechanical properties of rock materials will ...The hydrostatic or confining pressure of deep rocks has a significant impact on the mechanical behavior of brittle materials.Especially when confining pressure is applied,the mechanical properties of rock materials will undergo significant changes.Considering that the process of shale sample subjected to impact load is in a closed container in the dynamic triaxial SHPB test,the failure process of the sample cannot be observed.Meanwhile,the activation volume of the shale sample would be large and local failure would occur in the test under the high strain rate loading.Therefore,thefinite element model of shale considering the bedding effect under confining pressure was established in this study.Taking shale materials with different bedding dip angles as simulation objects,the dynamic failure characteristics of shale were studied using the dynamic analysis software ANSYS/LS‐DYNA from three aspects:stress‐strain curve,failure growth process,and failure morphology.The research results obtained can serve as the key technical parameters for deep resource extraction.展开更多
Frequent rockburst disasters in deep-buried engineering projects severely impact construction. To explore the influence of axial stress on rockburst in deep-buried tunnels, large-scale true triaxial rockburst experime...Frequent rockburst disasters in deep-buried engineering projects severely impact construction. To explore the influence of axial stress on rockburst in deep-buried tunnels, large-scale true triaxial rockburst experiments were conducted under four different axial stress ratio conditions (ηt, axial loading stress/vertical loading stress) using a self-developed true triaxial loading device under the condition of "pre-loading before excavation". The influence of axial stress on the rockburst process and failure characteristics in deep tunnels was studied using a combination of real-time video monitoring, rockburst debris sieving, and acoustic emission monitoring. The results indicate: (1) all four specimens subjected to different axial stress ratio loading conditions exhibited three stages of macroscopic failure: small particle ejection, flake spalling, and large fragment ejection. Ultimately, "V"-shaped notches appeared on both sides of the tunnel. (2) The failure stress, fragment volume, and fragment size distribution of the rockburst specimens exhibited a clear two-stage failure characteristic with increasing axial stress ratio. In the lower axial stress ratio stage (ηt ≤ 0.7), the increase in the axial stress ratio enhances lateral confinement, thereby increasing the crack initiation strength of the surrounding rock, inhibiting crack formation and propagation, and thus suppressing damage to the surrounding rock of the tunnel. In the higher axial stress ratio stage (ηt > 0.7), the increase in axial stress ratio makes the Poisson effect of the surrounding rock more pronounced, promoting the generation and propagation of cracks along the tunnel axis direction, thereby promoting damage to the surrounding rock. (3) Based on the analysis of acoustic emission parameters (fracture properties), it can be concluded that in the lower axial stress ratio stage (ηt ≤ 0.7), an increase in the axial stress ratio leads to a higher proportion of shear fracture in rockburst damage. Conversely, in the higher axial stress ratio stage (ηt > 0.7), the increase in axial stress ratio gradually reduces the proportion of shear fracture in rockburst damage.展开更多
A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to impr...A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to improve explosion resistance.Moreover,the current challenge is quantifying microstructural changes'effects on explosion resistance and incorporating microstructural changes into finite element models.This work aims to tune microstructures to improve explosion resistance and elucidate their anti-explosion mechanism,and find a suitable method to incorporate microstructural changes into finite element models.In this work,we systematically study the deformation and failure characteristics of TC4 ELI plates with varying microstructures using an air explosion test and LS-DYNA finite element modeling.The Johnson-Cook(JC)constitutive parameters are used to quantify the effects of microstructural changes on explosion resistance and incorporate microstructural changes into finite element models.Because of the heat treatment,one plate has equiaxed microstructure and the other has bimodal microstructure.The convex of the plate after the explosion has a quadratic relationship with the charge mass,and the simulation results demonstrate high reliability,with the error less than 17.5%.Therefore,it is feasible to obtain corresponding JC constitutive parameters based on the differences in microstructures and mechanical properties and characterize the effects of microstructural changes on explosion resistance.The bimodal target exhibits excellent deformation resistance.The response of bimodal microstructure to the shock wave may be more intense under explosive loading.The well-coordinated structure of the bimodal target enhances its resistance to deformation.展开更多
The understanding of the weakening mechanism of tensile strength of rock subjected to cyclic wetting-drying is critical for rock engineering.Tensile strength tests were conducted on a total of 35 sandstone specimens w...The understanding of the weakening mechanism of tensile strength of rock subjected to cyclic wetting-drying is critical for rock engineering.Tensile strength tests were conducted on a total of 35 sandstone specimens with different wetting-drying cycles.The crack propagation process and acoustic emission characteristics of the tested samples were obtained through a high-speed camera and acoustic emission system.The results indicate that the tensile strength is observably reduced after cyclic wetting-drying,and the extent of the reduction is not only related to the number of wettingdrying cycle,but also closely related to the clay mineral content of the sample.In addition,as the cycles of wetting-drying increase,the effect of each single cycle on tensile strength get reduced until it becomes constant.Moreover,the crack initiation and penetration time is prolonged as the number of wetting-drying cycle increases,which indicates that cyclic wetting-drying weakens the rock stiffness and enhances the ductility of sandstone.Meanwhile,the acoustic emission characteristics of the tested samples further confirmed the ductile behaviour of the sandstone samples with increasing wetting-drying cycle.Furthermore,through the analysis of the microstructure and mineral composition of the samples with different wetting-drying cycles,it is concluded that the main weakening mechanisms of sandstones containing clay minerals are frictional reduction,chemical and corrosive deterioration.展开更多
Due to the influence of mining disturbance stress,it is of great significance to better understand the bearing characteristics of fully grouted bolts under different pull-out loading rates.For this purpose,a series of...Due to the influence of mining disturbance stress,it is of great significance to better understand the bearing characteristics of fully grouted bolts under different pull-out loading rates.For this purpose,a series of laboratory pull-out tests were conducted to comprehensively investigate the effects of different pull-out loading rates on the mechanical performance and failure characteristics of fully grouted bolts.The results show that the mechanical performance of the anchored specimen presents obvious loading rate dependence and shear enhancement characteristics.With the increase of the pull-out loading rates,the maximum pull-out load increases,the displacement and time corresponding to the maximum pull-out load decrease.The accumulated acoustic emission(AE)counts,AE energy and AE events all decrease with the increase of the pull-out loading rates.The AE peak frequency has obvious divisional distribution characteristics and the amplitude is mainly distributed between 50-80 dB.With the increase of the pull-out loading rates,the local strain of the anchoring interface increases and the failure of the anchoring interface transfers to the interior of the resin grout.The accumulated AE counts are used to evaluate the damage parameter of the anchoring interface during the whole pull-out process.The analytical results are in good agreement with the experimental results.The research results may provide guidance for the support design and performance monitoring of fully grouted bolts.展开更多
Rock bolts have been widely used for stabilizing rock mass in geotechnical engineering.It is acknowledged that the bolt profiles have a sound influence on the support effect of the rock bolting system.Previous studies...Rock bolts have been widely used for stabilizing rock mass in geotechnical engineering.It is acknowledged that the bolt profiles have a sound influence on the support effect of the rock bolting system.Previous studies have proposed some optimal rib parameters(e.g.rib spacing);unfortunately,the interface shear behaviors are generally ignored.Therefore,determination of radial stress and radial displacement on the bolt-grout interface using traditional pull-out tests is not possible.The load-bearing capacity and deformation capacity vary as bolt profiles differ,suggesting that the support effect of the bolting system can be enhanced by optimizing bolt profiles.The aim of this study is to investigate the effects of bolt profiles(with/without ribs,rib spacing,and rib height)on the shear behaviors between the rock bolt and grout material using direct shear tests.Thereby,systematic interfacial shear tests with different bolt profiles were performed under both constant normal load(CNL)and constant normal stiffness(CNS)boundary conditions.The results suggested that rib spacing has a more marked influence on the interface shear behavior than rib height does,in particular at the post-yield stage.The results could facilitate our understanding of bolt-grout interface shear behavior under CNS conditions,and optimize selection of rock bolts under in situ rock conditions.展开更多
基金Projects (2013BAB02B01, 2013BAB02B03) supported by the Key Projects in the National Science & Technoogy Pillar Program During the Twelfth Five-Year Plan PeriodProjects (51274055, 51204030, 51204031, 51109035) supported by the National Natural Science Foundation of ChinaProjects (N110301006, N110501001, N110401003) supportecd by the Fundamental Research Funds for the Central Unviersity, China
文摘Acoustic emission (AE) technique is a useful tool for investigating rock damage mechanism, and is used to study the temporal-spatial evolution process of microcracks during the similar pillar material experiment. A combined AE location algorithm was developed based on the Least square algorithm and Geiger location algorithm. The pencil break test results show that the location precision can meet the demand of microcrack monitoring. The 3D location of AE events can directly reflect the process of initiation, propagation and evolutionary of microcracks. During the loading process, stress is much likely concentrated on the area between pillar and roof of the specimen, where belongs to danger zone of macroscopic failure. When rock reaches its plastic deformation stage, AE events begin to decrease, which indicates that AE quiet period can be seen as precursor characteristic of rock failure.
基金This work was supported by the National Natural Science Foundation of China(No.52104125)the funding of State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining&Technology,Beijing(SKLGDUEK2133)+1 种基金the funding of Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province(No.ZJRMG-2020-02)the Fundamental Research Funds for the Central Universities.
文摘The strength of sandstone decreases significantly with higher water content attributing to softening effects.This scenario can pose a severe threat to the stability of reservoirs of pumped storage power stations developed from abandoned mines,especially when subjected to the cyclic loading condition caused by the repeated drainage and storage of water(fatigue damage).Based on this,it is essential to focus on the fatigue failure characteristics.In this study,the mineral composition of the used sandstone of Ruineng coal mine in Shanxi Province,China,was first tested to elucidate the rock softening mechanism after absorbing water.Next,a numerical model for replicating the mechanical behavior of water-bearing sandstone was established using twodimensional particle flow code(PFC2D)with a novel contact model.Then,16 uniaxial cyclic loading simulations with distinct loading parameters related to reservoir conditions(loading frequency,amplitude level,and maximum stress level)and different water contents were conducted.The numerical results show that all these three loading parameters affect the failure characteristics of sandstone,including irreversible strain,damage evolution,strain behavior,and fatigue life.The influence degree of these three parameters on failure behavior increases in the order of maximum stress level,loading frequency,and amplitude level.However,for the samples with different water contents,their failure characteristics are similar under the same loading conditions.Furthermore,the failure mode is almost unaffected by the loading parameters,while the water content plays a significant role and causing the transformation from the tensile splitting with low water content to the shear failure with higher water content.
基金the National Key Research and Development Program of China(Nos.2019YFE0118500 and 2019YFC1904304)National Natural Science Foundation of China(Nos.52104107 and U22A20598)Natural Science Foundation of Jiangsu Province(No.BK20200634).
文摘Investigations on the dynamic mechanical properties and failure mechanisms of coal under in-situ stress is essential for the prevention of dynamic disasters in deep coal mines.Thus,a modified true triaxial Hopkinson bar was employed to explore the dynamic mechanical behaviors of coal at different confining pressures(0–20 MPa)and strain rates(40–220 s^(-1)).The results show that the dynamic peak stress is positively correlated with lateral static pre-stressσy andσz,but negatively correlated with axial static prestressσx.At approximate strain rates,increasing the lateral static pre-stress facilitates increasing the dynamic peak stress,but the minimum lateral static pre-stress is the primary factor limiting a significant increase in dynamic peak stress of coal.Furthermore,the dynamic differential stress is linearly related to the logarithm of strain rate,and the peak strain varies linearly with strain rate.However,there is no significant correlation between confining pressure and peak strain.Moreover,X-ray CT images and photographic fracture observations of coal samples show the failure patterns under uniaxial and triaxial conditions are splitting failure and shear failure,respectively.The device provides a viable approach for fully comprehending the dynamic mechanical behaviors of rock-like material in complex stress conditions.
基金funded by the National Natural Science Foundation of China (Grant No. 41825018)the National Key Research and Development Plan of China (Grant No. 2019YFC1509704)the Second Tibetan Plateau Scientific Expedition and Research Program (STEP, Grant No. 2019QZKK0904)。
文摘Bedding rock slopes are common geological features in nature that are prone to failure under strong earthquakes. Their failures induce catastrophic landslides and form barrier lakes, posing severe threats to people’s lives and property. Based on the similarity criteria, a bedding rock slope model with a length of3 m, a width of 0.8 m, and a height of 1.6 m was constructed to facilitate large-scale shaking table tests.The results showed that with the increase of vibration time, the natural frequency of the model slope decreased, but the damping ratio increased. Damage to the rock mass structure altered the dynamic characteristics of the slope;therefore, amplification of the acceleration was found to be nonlinear and uneven. Furthermore, the acceleration was amplified nonlinearly with the increase of slope elevation along the slope surface and the vertical section, and the maximum acceleration amplification factor(AAF) occurred at the slope crest. Before visible deformation, the AAF increased with increasing shaking intensity;however, it decreased with increasing shaking intensity after obvious deformation. The slope was likely to slide along the bedding planes at a shallow depth below the slope surface. The upper part of the slope mainly experienced a tensile-shear effect, whereas the lower part suffered a compressive-shear force. The progressive failure process of the model slope can be divided into four stages, and the dislocated rock mass can be summarized into three zones. The testing data provide a good explanation of the dynamic behavior of the rock slope when subjected to an earthquake and may serve as a helpful reference in implementing antiseismic measures for earthquake-induced landslides.
基金Financial support for this work, provided by the National Natural Science Foundation of China (Nos. 50774082, 50804046 and 51109209)
文摘Based on uniaxial compression experimental results on fractured sandstone with grouting and anchorage, we studied the strength and deformation properties, the failure model, crack formation and evolution laws of fractured sandstone under different conditions of anchorage. The experimental results show that the strength and elastic modulus of fractured sandstone with different fracture angles are significantly lower than those of intact sandstone. Compared with the fractured samples without anchorage,the peak strength, residual strength, peak and ultimate axial strain of fractured sandstone under different anchorage increase by 64.5–320.0%, 62.8–493.0%, and 31.6–181.4%, respectively. The number of bolts and degree of pre-stress has certain effects on the peak strength and failure model of fractured sandstone. The peak strength of fractured sandstone under different anchorage increases to some extent, and the failure model of fractured sandstone also transforms from tensile failure to tensile–shear mixed failure with the number of bolts. The pre-stress can restrain the formation and evolution process of tensile cracks, delay the failure process of fractured sandstone under anchorage and impel the transformation of failure model from brittle failure to plastic failure.
基金sponsored by the National High-Tech Research and Development Program of China(No.2007AA06Z220)the Key Science and Technology Program of Ministry of Education(No. 307014)the Research Program of Huainan Mining Group.
文摘Based on data from through-hole and logging,we studied the failure characteristics of surface drainage wells for relieved coal gas in Huainan mining area and its influencing factors.The results show that the damaged positions of drainage wells are mainly located at the thick clay layer in the low alluvium and the lithological interface in the upper section of bedrock in west mining area.The failure depth of casing is 244-670 m and concentrates at about 270-460 m deep.These damaged positions are mainly located in the bending zone according to three zones of rock layers in the vertical section above the roof divided. Generally,the casing begins to deform or damage before the face line about 30-150 m.Special formation structure and rock mass properties are the direct causes of the casing failure,high mining height and fast advancing speed are fundamental reasons for rock mass damage.However,the borehole configuration and spacing to the casing failure are not very clear.
文摘Using self-made impact fatigue test instruments and related analytic devices,the mechanical components with laser cladding layer have been attempted. It is found that, onrepeated impact force, several failure modes of the components include the surface cracks, surfaceplastic deformation, corrosive pitting and coat collapse, etc. The paper reported the test methodand initial analysis conclusions about the unique failure characteristics of the mechanicalcomponents on repeated impact load.
基金supported by the National Key Research and Development Program of China-2023 Key Special Project(No.2023YFC_(2)907400)the Hunan Provincial Natural Science Foundation for Distinguished Young Scholars,China(No.2023JJ10072)+1 种基金the Science and Technology Innovation Program of Hunan Province,China(No.2022RC1173)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2023ZZTS0499).
文摘To study the influence of axial stress on the failure characteristics of deep arched roadway considering structural effect,true triaxial compression tests were conducted on cubic granite specimens with a three-centered arched hole structure.A video monitoring device was utilized to record the failure process of surrounding rocks.The test results show that under 10−60 MPa axial stress,the surrounding rock failure process included the calm stage,particle ejection stage,fragment ejection stage,and rock slice buckling and spalling stage.Under higher axial stresses(70 and 80 MPa),the failure process is characterized by violent fragment spray during the fourth stage.As the axial stress increases,the failure of surrounding rock increases,while the initial vertical failure stress first increases and then decreases.According to the failure characteristics of roadway under different axial stresses,arranging the roadway along the direction of a moderate axial stress level is desired.
基金supported by the National Natural Science Foundation of China(Grant No.52074295)the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining&Technology,Beijing(Grant No.SKLGDUEK202217).
文摘An extra-large landslide occurred on June 19,2021,on the footwall slope of the Nanfen Open-pit Iron Mine in Liaoning Province,China,with a volume of approximately 1.2×107 m3.To elucidate the causative factors,development process,and destructive mechanisms of this catastrophic landslide,comprehensive field tests,investigations,and laboratory experiments were conducted.Initially,the heavily weathered rock mass of the slope was intersected by faults and joint fissures,facilitating rainwater infiltration.Moreover,the landslide contained a substantial clay mineral with highly developed micro-cracks and micro-pores,exhibiting strong water-absorption properties.As moisture content increased,the rock mass underwent softening,resulting in reduced strength.Ultimately,continuous heavy rainfall infiltration amplified the slope's weight,diminishing the weak structural plane's strength,leading to fracture propagation,slip plane penetration,and extensive tensile-shear and uplift failure of the slope.The study highlights poor geological conditions as the decisive factor for this landslide,with continuous heavy rainfall as the triggering factor.Presently,adverse environmental factors persistently affect the landslide,and deformation and failure continue to escalate.Hence,it is imperative to urgently implement integrated measures encompassing slope reinforcement,monitoring,and early-warning to real-time monitor the landslide's deformation and deep mechanical evolution trends.
基金supported by Open Research Fund of Hubei Key Laboratory of Blasting(Engineering HKL-BEF202006)the National Natural Science Foundation of China(52079102,52108368).
文摘To study the dynamic mechanical properties and failure characteristics of intersecting jointed rock masses with different joint distributions under confining pressure,considering the cross angleαand joint persistence ratioη,a numerical model of the biaxial Hopkinson bar test system was established using the finite element method–discrete-element model coupling method.The validity of the model was verified by comparing and analyzing it in conjunction with laboratory test results.Dynamics-static combined impact tests were conducted on specimens under various conditions to investigate the strength characteristics and patterns of crack initiation and expansion.The study revealed the predominant factors influencing intersecting joints with different angles and penetrations under impact loading.The results show that the peak stress of the specimens decreases first and then increases with the increase of the cross angle.Whenα<60°,regardless of the value ofη,the dynamic stress of the specimens is controlled by the main joint.Whenα≥60°,the peak stress borne by the specimens decreases with increasingη.Whenα<60°,the initiation and propagation of cracks in the cross-jointed specimens are mainly controlled by the main joint,and the final failure surface of the specimens is composed of the main joint and wing cracks.Whenα≥60°orη≥0.67,the secondary joint guides the expansion of the wing cracks,and multiple failure surfaces composed of main and secondary joints,wing cracks,and co-planar cracks are formed.Increasing lateral confinement significantly increases the dynamic peak stress able to be borne by the specimens.Under triaxial conditions,the degree of failure of the intersecting jointed specimens is much lower than that under uniaxial and biaxial conditions.
基金supported by the National Natural Science Foundation of China (Grant No.52225404)Beijing Outstanding Young Scientist Program (Grant No.BJJWZYJH01201911413037)Central University Excellent Youth Team Funding Project (Grant No.2023YQTD01).
文摘The failure modes of rock after roadway excavation are diverse and complex.A comprehensive investigation of the internal stress field and the rotation behavior of the stress axis in roadways is essential for elucidating the mechanism of roadway failure.This study aimed to examine the spatial relationship between roadways and stress fields.The law of stress axis rotation under three-dimensional(3D)stress has been extensively studied.A stress model of roadways in the spatial stress field was established,and the far-field stress state at different spatial positions of the roadways was analyzed.A mechanical model of roadways under a 3D stress state was established using far-field stress solutions as boundary conditions.The distribution of principal stressesσ1,σ2 andσ3 around the roadways and the variation of the stress principal axis were solved.It was found that the stability boundary of the stress principal axis exhibits hysteresis when compared with that of the principal stress magnitudes.A numerical analysis model for spatial roadways was established to validate the distribution of principal stress and the mechanism of principal axis rotation.Research has demonstrated that the stress axis undergoes varying degrees of spatial rotation in different orientations and radial depths.Based on the distribution of principal stress and the rotation law of the stress principal axis,the entire evolution mechanism of the two stress adjustments to form the final failure form after roadway excavation has been revealed.The on-site detection results also corroborate the findings presented in this paper.The results provide a basis for the analysis of the failure mechanism under a 3D stress state.
基金provided by the National Natural Science Foundation of China (No. 50974118)the New Century Talents Supporting Program from Ministry of Education (No.NCET-09-0727)the Program for Postgraduates Research Innovation in Universities of Jiangsu Province of China (No.CXZZ12_0951)
文摘Ascending mining is one of the most effective ways to solve problems of water inrush, gas outburst and rock burst in coal seams mining. In order to reveal the law of motion and spatiotemporal relationship of overlaying strata, field measurement has been done in a mine. Long distance drillings were constructed from 4# coal seam to 6# coal seam at several certain typical positions, and movement and failure law of overlying strata after mining was analyzed by drilling video and observing the fluid leakage. Besides, we also analyzed the spatiotemporal development law of overlying strata failure with different mining heights and time intervals in the lower coal seam. The results show that: ascending mining is significantly affected by time-domain characteristics of overlaying strata failure after the lower coal seam's mining, height equations of caving zone and fractured zone are given in this paper, and the feasibility of ascending mining was compartmentalized concretely according to the spatiotemporal relationship. Research methods and conclusions of this paper have certain referential significance for the study of ascending mining, mining under water, mining under building, mining under railway and stress-relief mining.
基金Joint Funds of National Natural Science Foundation of China(No.U1134208)National Key Basic Research Program of China(No.2010CB732105)National Natural Science Foundation of China(No.50925830,No.51208432)
文摘Based on the first unde rwater railway shield tunnel, the Shiziyang shield tunnel of Guangzhou Zhu- jiang River, the prototype test was carried out against its segmental lining structure by using "multi-function shield tunnel structure test system". And the mechanical characteristics of segmental lining structure using straight assembling and staggered assembling were studied deeply. The results showed that, the mechanical characteristics of segmental lining structure varied with the water pressures; especially after cracking, the high water pressure played a significant role in slowing down the growing inner force and deformation. It also testi- fied that the failure characteristics varied with straight assembling structure and staggered assembling structure. Shear thilurc often occurred near longitudinal seam when using straight assembling.
基金Project(2012AA091291)supported by the National High-tech Research and Development Program of ChinaProject(51074179)supported by the National Natural Science Foundation of ChinaProjects(JCYJ20130401160614378,JCYJ20140506150310437)supported by Shenzhen Science and Technology Innovation Basic Research Foundation,China
文摘Deformation characteristics and constitutive model of seafloor massive sulfide(SMS)were selected as the research object.Uniaxial/triaxial compression test were carried out on the mineral samples,and the deformation characteristics of specimens under various conditions were studied.According to characteristics of the mineral,a new three stages constitutive equation was proposed.The conclusions are as follows:The axial strain,peak strain and maximum strength of seafloor massive sulfide increase with the confining pressure.The elastic modulus of the metal sulfide samples is decreased sharply with the increase of confining pressure.According to characteristics of seafloor massive sulfide,the constitutive equation is divided into three parts,the comparison between theoretical curves and experimental data shows that both of them are in good agreement,which also proves the correctness of the constitutive equation for uniaxial compression.
基金National Key Research and Development Project of China,Grant/Award Number:2020YFA0711800National Natural Science Foundation of China,Grant/Award Numbers:12072363,12372373。
文摘The hydrostatic or confining pressure of deep rocks has a significant impact on the mechanical behavior of brittle materials.Especially when confining pressure is applied,the mechanical properties of rock materials will undergo significant changes.Considering that the process of shale sample subjected to impact load is in a closed container in the dynamic triaxial SHPB test,the failure process of the sample cannot be observed.Meanwhile,the activation volume of the shale sample would be large and local failure would occur in the test under the high strain rate loading.Therefore,thefinite element model of shale considering the bedding effect under confining pressure was established in this study.Taking shale materials with different bedding dip angles as simulation objects,the dynamic failure characteristics of shale were studied using the dynamic analysis software ANSYS/LS‐DYNA from three aspects:stress‐strain curve,failure growth process,and failure morphology.The research results obtained can serve as the key technical parameters for deep resource extraction.
基金funded by the National Natural Science Foundation of China(Nos.42077228,52174085)。
文摘Frequent rockburst disasters in deep-buried engineering projects severely impact construction. To explore the influence of axial stress on rockburst in deep-buried tunnels, large-scale true triaxial rockburst experiments were conducted under four different axial stress ratio conditions (ηt, axial loading stress/vertical loading stress) using a self-developed true triaxial loading device under the condition of "pre-loading before excavation". The influence of axial stress on the rockburst process and failure characteristics in deep tunnels was studied using a combination of real-time video monitoring, rockburst debris sieving, and acoustic emission monitoring. The results indicate: (1) all four specimens subjected to different axial stress ratio loading conditions exhibited three stages of macroscopic failure: small particle ejection, flake spalling, and large fragment ejection. Ultimately, "V"-shaped notches appeared on both sides of the tunnel. (2) The failure stress, fragment volume, and fragment size distribution of the rockburst specimens exhibited a clear two-stage failure characteristic with increasing axial stress ratio. In the lower axial stress ratio stage (ηt ≤ 0.7), the increase in the axial stress ratio enhances lateral confinement, thereby increasing the crack initiation strength of the surrounding rock, inhibiting crack formation and propagation, and thus suppressing damage to the surrounding rock of the tunnel. In the higher axial stress ratio stage (ηt > 0.7), the increase in axial stress ratio makes the Poisson effect of the surrounding rock more pronounced, promoting the generation and propagation of cracks along the tunnel axis direction, thereby promoting damage to the surrounding rock. (3) Based on the analysis of acoustic emission parameters (fracture properties), it can be concluded that in the lower axial stress ratio stage (ηt ≤ 0.7), an increase in the axial stress ratio leads to a higher proportion of shear fracture in rockburst damage. Conversely, in the higher axial stress ratio stage (ηt > 0.7), the increase in axial stress ratio gradually reduces the proportion of shear fracture in rockburst damage.
基金National Key Laboratory of Science and Technology on Materials under Shock and Impact(Grant No.WDZC2022-4)to provide fund for conducting experiments。
文摘A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to improve explosion resistance.Moreover,the current challenge is quantifying microstructural changes'effects on explosion resistance and incorporating microstructural changes into finite element models.This work aims to tune microstructures to improve explosion resistance and elucidate their anti-explosion mechanism,and find a suitable method to incorporate microstructural changes into finite element models.In this work,we systematically study the deformation and failure characteristics of TC4 ELI plates with varying microstructures using an air explosion test and LS-DYNA finite element modeling.The Johnson-Cook(JC)constitutive parameters are used to quantify the effects of microstructural changes on explosion resistance and incorporate microstructural changes into finite element models.Because of the heat treatment,one plate has equiaxed microstructure and the other has bimodal microstructure.The convex of the plate after the explosion has a quadratic relationship with the charge mass,and the simulation results demonstrate high reliability,with the error less than 17.5%.Therefore,it is feasible to obtain corresponding JC constitutive parameters based on the differences in microstructures and mechanical properties and characterize the effects of microstructural changes on explosion resistance.The bimodal target exhibits excellent deformation resistance.The response of bimodal microstructure to the shock wave may be more intense under explosive loading.The well-coordinated structure of the bimodal target enhances its resistance to deformation.
基金Funding for this work was provided by Natural Science Foundation of China(41941018,41402273),the Yue Qi Scholar Program of China University of Mining and Technology.The authors wish to thank the reviewers for careful and constructive suggestions.
文摘The understanding of the weakening mechanism of tensile strength of rock subjected to cyclic wetting-drying is critical for rock engineering.Tensile strength tests were conducted on a total of 35 sandstone specimens with different wetting-drying cycles.The crack propagation process and acoustic emission characteristics of the tested samples were obtained through a high-speed camera and acoustic emission system.The results indicate that the tensile strength is observably reduced after cyclic wetting-drying,and the extent of the reduction is not only related to the number of wettingdrying cycle,but also closely related to the clay mineral content of the sample.In addition,as the cycles of wetting-drying increase,the effect of each single cycle on tensile strength get reduced until it becomes constant.Moreover,the crack initiation and penetration time is prolonged as the number of wetting-drying cycle increases,which indicates that cyclic wetting-drying weakens the rock stiffness and enhances the ductility of sandstone.Meanwhile,the acoustic emission characteristics of the tested samples further confirmed the ductile behaviour of the sandstone samples with increasing wetting-drying cycle.Furthermore,through the analysis of the microstructure and mineral composition of the samples with different wetting-drying cycles,it is concluded that the main weakening mechanisms of sandstones containing clay minerals are frictional reduction,chemical and corrosive deterioration.
基金Projects(51925402,U1710258,52004172)supported by the National Natural Science Foundation of ChinaProject(20201102004)supported by the Science and Technology Department of Shanxi Province,China。
文摘Due to the influence of mining disturbance stress,it is of great significance to better understand the bearing characteristics of fully grouted bolts under different pull-out loading rates.For this purpose,a series of laboratory pull-out tests were conducted to comprehensively investigate the effects of different pull-out loading rates on the mechanical performance and failure characteristics of fully grouted bolts.The results show that the mechanical performance of the anchored specimen presents obvious loading rate dependence and shear enhancement characteristics.With the increase of the pull-out loading rates,the maximum pull-out load increases,the displacement and time corresponding to the maximum pull-out load decrease.The accumulated acoustic emission(AE)counts,AE energy and AE events all decrease with the increase of the pull-out loading rates.The AE peak frequency has obvious divisional distribution characteristics and the amplitude is mainly distributed between 50-80 dB.With the increase of the pull-out loading rates,the local strain of the anchoring interface increases and the failure of the anchoring interface transfers to the interior of the resin grout.The accumulated AE counts are used to evaluate the damage parameter of the anchoring interface during the whole pull-out process.The analytical results are in good agreement with the experimental results.The research results may provide guidance for the support design and performance monitoring of fully grouted bolts.
基金This study is supported by the key projects of the Yalong River Joint Fund of the National Natural Science Foundation of China(Grant No.U1865203)the National Key Research and Development Program of China(Grant Nos.2019YFC0605103,2019YFC0605100)the National Natural Science Foundation of China(Grant No.51279201).The partial support from the Youth Innovation Promotion Association CAS is gratefully acknowledged。
文摘Rock bolts have been widely used for stabilizing rock mass in geotechnical engineering.It is acknowledged that the bolt profiles have a sound influence on the support effect of the rock bolting system.Previous studies have proposed some optimal rib parameters(e.g.rib spacing);unfortunately,the interface shear behaviors are generally ignored.Therefore,determination of radial stress and radial displacement on the bolt-grout interface using traditional pull-out tests is not possible.The load-bearing capacity and deformation capacity vary as bolt profiles differ,suggesting that the support effect of the bolting system can be enhanced by optimizing bolt profiles.The aim of this study is to investigate the effects of bolt profiles(with/without ribs,rib spacing,and rib height)on the shear behaviors between the rock bolt and grout material using direct shear tests.Thereby,systematic interfacial shear tests with different bolt profiles were performed under both constant normal load(CNL)and constant normal stiffness(CNS)boundary conditions.The results suggested that rib spacing has a more marked influence on the interface shear behavior than rib height does,in particular at the post-yield stage.The results could facilitate our understanding of bolt-grout interface shear behavior under CNS conditions,and optimize selection of rock bolts under in situ rock conditions.