How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linea...How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linearizing technique based on the nonlinear term to reduce the effect of the nonlinear terms.We decompose the nonlinear terms in the NAEs through a splitting parameter and then linearize the NAEs around the values at the previous step to a linear system.Through the maximal orthogonal projection concept,to minimize a merit function within a selected interval of splitting parameters,the optimal parameters can be quickly determined.In each step,a linear system is solved by the Gaussian elimination method,and the whole iteration procedure is convergent very fast.Several numerical tests show the high performance of the optimal split-linearization iterative method(OSLIM).展开更多
An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential e...An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions.展开更多
This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. ...This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. A new convergence concept, called DA-convergence, is introduced. The DA-convergence result for the methods is derived. At the end, a numerical example is given to verify the computational effectiveness and the theoretical result.展开更多
The algebraic energy method (AEM) is applied to the study of molecular dissociation energy De for 11 heteronuclear diatomic electronic states: a^3∑+ state of NaK, X^2∑+ state of XeBr, X^2∑+ state of HgI, X^1...The algebraic energy method (AEM) is applied to the study of molecular dissociation energy De for 11 heteronuclear diatomic electronic states: a^3∑+ state of NaK, X^2∑+ state of XeBr, X^2∑+ state of HgI, X^1∑+ state of LiH, A3∏(1) state of IC1, X^1∑+ state of CsH, A(3∏1) and B0+(3∏) states of CIF, 21∏ state of KRb, X^1∑+ state of CO, and c^3∑+ state of NaK molecule. The results show that the values of De computed by using the AEM are satisfactorily accurate compared with experimental ones. The AEM can serve as an economic and useful tool to generate a reliable De within an allowed experimental error for the electronic states whose molecular dissociation energies are unavailable from the existing literature展开更多
To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an und...To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.展开更多
The algebraic collapsing acceleration(ACA)technique maximizes the use of geometric flexibility of the method of characteristics(MOC).The spatial grids for loworder ACA are the same as the high-order transport,which ma...The algebraic collapsing acceleration(ACA)technique maximizes the use of geometric flexibility of the method of characteristics(MOC).The spatial grids for loworder ACA are the same as the high-order transport,which makes the numerical solution of ACA equations costly,especially for large-size problems.To speed-up the MOC transport iterations effectively for general geometry,a coarse-mesh ACA method that involves selectively merging fine-mesh cells with identical materials,called material-mesh ACA(MMACA),is presented.The energy group batching(EGB)strategy in the tracing process is proposed to increase the parallel efficiency for microscopic crosssection problems.Microscopic and macroscopic crosssection benchmark problems are used to validate and analyse the accuracy and efficiency of the MMACA method.The maximum errors in the multiplication factor and pin power distributions are from the VERA-4 B-2 D case with silver-indium-cadmium(AIC)control rods inserted and are 104 pcm and 1.97%,respectively.Compared with the single-thread ACA solution,the maximum speed-up ratio reached 25 on 12 CPU cores for microscopic cross-section VERA-4-2 D problem.For the C5 G7-2 D and LRA-2 D benchmarks,the MMACA method can reduce the computation time by approximately one half.The present work proposes the MMACA method and demonstrates its ability to effectively accelerate MOC transport iterations.展开更多
This is a study of the Durand-Kerner and Nourein methods for finding the roots of a given algebraic equation simultaneously. We consider the conditions under which the iterative methods fail. The numerical example is ...This is a study of the Durand-Kerner and Nourein methods for finding the roots of a given algebraic equation simultaneously. We consider the conditions under which the iterative methods fail. The numerical example is presented.展开更多
Based on algebraic dynamics and the concept of the concurrence of the entanglement, we investigate the evolutive properties of the two-qubit entanglement that formed by Heisenberg XXX models under a time-depending ext...Based on algebraic dynamics and the concept of the concurrence of the entanglement, we investigate the evolutive properties of the two-qubit entanglement that formed by Heisenberg XXX models under a time-depending external field. For this system, the property of the concurrence that is only dependent on the coupling constant J and total values of the external field is proved. Furthermore, we found that the thermal concurrence of the system under a static random external field is a function of the coupling constant J, temperature T, and the magnitude of external field.展开更多
An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byu...An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byusing SU(2), SU(1,1) Lie algebraic method, respectively. Meanwhile, the eigenstates of the above two models are revealedto be SU(2), SU(1,1) coherent states, respectively. The relation between the usual Bogoliubov Valatin transformationand the algebraic method in a special case is also discussed.展开更多
A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, th...A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.展开更多
In this study,the potential Kadomtsev-Petviashvili(pKP)equation,which describes the oblique interaction of surface waves in shallow waters,is solved by the new extended direct algebraic method.The results of the study...In this study,the potential Kadomtsev-Petviashvili(pKP)equation,which describes the oblique interaction of surface waves in shallow waters,is solved by the new extended direct algebraic method.The results of the study show that by applying the new direct algebraic method to the pKP equation,the behavior of the obliquely interacting surface waves in two dimensions can be analyzed.This article fairly clarifies the behaviors of surface waves in shallow waters.In the literature,several mathematical models have been developed in attempt to study these behaviors,with nonlinear mathematics being one of the most important steps;however,the investigations are still at a level that can be called‘baby steps’.Therefore,every study to be carried out in this context is of great importance.Thus,this study will serve as a reference to guide scientists working in this field.展开更多
In this paper the algebraic multi-grid principle is applied to the multilevel moment method, which makes the new multilevel method easier to implement and more adaptive to structure. Moreover, the error spectrum is an...In this paper the algebraic multi-grid principle is applied to the multilevel moment method, which makes the new multilevel method easier to implement and more adaptive to structure. Moreover, the error spectrum is analyzed, and the reason why conjugate gradient iteration is not a good relaxation scheme for multi-grid algorithm is explored. The numerical results show that our algebraic block Gauss Seidel multi-grid algorithm is very effective.展开更多
A class of parallel Rosenbrock methods for differential algebraic equations are presented in this paper. The local truncation errors are defined and the order conditions are established by using the DA-trees and DA-se...A class of parallel Rosenbrock methods for differential algebraic equations are presented in this paper. The local truncation errors are defined and the order conditions are established by using the DA-trees and DA-series. The paper also deals with the convergence of the parallel Rosenbrock methods for h -> 0 and states the bounds for the global errors of the methods. Some particular methods are obtained by solving the order equations and a numerical example is given, from which the theoretical orders are actually observed.展开更多
The algebraic structure and the Poisson method for a weakly nonholonomic system are studied.The differential equations of motion of the system can be written in a contravariant algebra form and its algebraic structure...The algebraic structure and the Poisson method for a weakly nonholonomic system are studied.The differential equations of motion of the system can be written in a contravariant algebra form and its algebraic structure is discussed.The Poisson theory for the systems which possess Lie algebra structure is generalized to the weakly nonholonomic system.An example is given to illustrate the application of the result.展开更多
A class of parallel multisplitting AOR method for solving large scale system of nonlinear equations A φ(x)+Bψ(x)=b was proposed. Under certain conditions, the existence and uniqueness of the solution of this system ...A class of parallel multisplitting AOR method for solving large scale system of nonlinear equations A φ(x)+Bψ(x)=b was proposed. Under certain conditions, the existence and uniqueness of the solution of this system of nonlinear equations were proved, and the global convergence theory of the new method was set up.展开更多
An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byu...An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byusing SU(2), SU(1,1) Lie algebraic method, respectively. Meanwhile, the eigenstates of the above two models are revealedto be SU(2), SU(1,1) coherent states, respectively. The relation between the usual Bogoliubov Valatin transformationand the algebraic method in a special case is also discussed.展开更多
A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta met...A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta methods, especially, for Radau Ⅰ A, Radau Ⅱ A and Gaussian Runge-Kutta methods.展开更多
We propose a continuous analogy of Newton’s method with inner iteration for solving a system of linear algebraic equations. Implementation of inner iterations is carried out in two ways. The former is to fix the numb...We propose a continuous analogy of Newton’s method with inner iteration for solving a system of linear algebraic equations. Implementation of inner iterations is carried out in two ways. The former is to fix the number of inner iterations in advance. The latter is to use the inexact Newton method for solution of the linear system of equations that arises at each stage of outer iterations. We give some new choices of iteration parameter and of forcing term, that ensure the convergence of iterations. The performance and efficiency of the proposed iteration is illustrated by numerical examples that represent a wide range of typical systems.展开更多
The dynamical Lie algebraic method is used for the description of statistical mechanics of rotationally inelastic molecule-surface scattering. It can give the time-evolution operators about the low power of and by s...The dynamical Lie algebraic method is used for the description of statistical mechanics of rotationally inelastic molecule-surface scattering. It can give the time-evolution operators about the low power of and by solving a set of coupled nonlinear differential equations. For considering the contribution of the high power of and , we use the Magnus formula. Thus, with the time-evolution operators we can get the statistical average values of the measurable quantities in terms of the density operator formalism in statistical mechanics. The method is applied to the scattering of (rigid rotor) by a flat, rigid surface to illustrate its general procedure. The results demonstrate that the method is useful for describing the statistical dynamics of gas-surface scattering.展开更多
A new general algebraic method is presented to uniformly construct a series of exact solutions for nonlinear evolution equations (NLEEs). For illustration, we apply the new method to shallow long wave approximate eq...A new general algebraic method is presented to uniformly construct a series of exact solutions for nonlinear evolution equations (NLEEs). For illustration, we apply the new method to shallow long wave approximate equations and successfully obtain abundant new exact solutions, which include rational solitary wave solutions and rational triangular periodic wave solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.展开更多
基金support provided by the Ministry of Science and Technology,Taiwan,ROC under Contract No.MOST 110-2221-E-019-044.
文摘How to accelerate the convergence speed and avoid computing the inversion of a Jacobian matrix is important in the solution of nonlinear algebraic equations(NAEs).This paper develops an approach with a splitting-linearizing technique based on the nonlinear term to reduce the effect of the nonlinear terms.We decompose the nonlinear terms in the NAEs through a splitting parameter and then linearize the NAEs around the values at the previous step to a linear system.Through the maximal orthogonal projection concept,to minimize a merit function within a selected interval of splitting parameters,the optimal parameters can be quickly determined.In each step,a linear system is solved by the Gaussian elimination method,and the whole iteration procedure is convergent very fast.Several numerical tests show the high performance of the optimal split-linearization iterative method(OSLIM).
基金National Natural Science Foundation of China under Grant No.10672053
文摘An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions.
文摘This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. A new convergence concept, called DA-convergence, is introduced. The DA-convergence result for the methods is derived. At the end, a numerical example is given to verify the computational effectiveness and the theoretical result.
基金Project supported by the Science Foundation of China West Normal University (Grant No 05B016) and the Science Foundation of Sichuan province Educational Bureau of China (Grant No 2006A080).
文摘The algebraic energy method (AEM) is applied to the study of molecular dissociation energy De for 11 heteronuclear diatomic electronic states: a^3∑+ state of NaK, X^2∑+ state of XeBr, X^2∑+ state of HgI, X^1∑+ state of LiH, A3∏(1) state of IC1, X^1∑+ state of CsH, A(3∏1) and B0+(3∏) states of CIF, 21∏ state of KRb, X^1∑+ state of CO, and c^3∑+ state of NaK molecule. The results show that the values of De computed by using the AEM are satisfactorily accurate compared with experimental ones. The AEM can serve as an economic and useful tool to generate a reliable De within an allowed experimental error for the electronic states whose molecular dissociation energies are unavailable from the existing literature
基金National Natural Science Foundation of China(Grant Nos.51925502,51575150).
文摘To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)the Frontier Science Key Program of the Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)。
文摘The algebraic collapsing acceleration(ACA)technique maximizes the use of geometric flexibility of the method of characteristics(MOC).The spatial grids for loworder ACA are the same as the high-order transport,which makes the numerical solution of ACA equations costly,especially for large-size problems.To speed-up the MOC transport iterations effectively for general geometry,a coarse-mesh ACA method that involves selectively merging fine-mesh cells with identical materials,called material-mesh ACA(MMACA),is presented.The energy group batching(EGB)strategy in the tracing process is proposed to increase the parallel efficiency for microscopic crosssection problems.Microscopic and macroscopic crosssection benchmark problems are used to validate and analyse the accuracy and efficiency of the MMACA method.The maximum errors in the multiplication factor and pin power distributions are from the VERA-4 B-2 D case with silver-indium-cadmium(AIC)control rods inserted and are 104 pcm and 1.97%,respectively.Compared with the single-thread ACA solution,the maximum speed-up ratio reached 25 on 12 CPU cores for microscopic cross-section VERA-4-2 D problem.For the C5 G7-2 D and LRA-2 D benchmarks,the MMACA method can reduce the computation time by approximately one half.The present work proposes the MMACA method and demonstrates its ability to effectively accelerate MOC transport iterations.
文摘This is a study of the Durand-Kerner and Nourein methods for finding the roots of a given algebraic equation simultaneously. We consider the conditions under which the iterative methods fail. The numerical example is presented.
文摘Based on algebraic dynamics and the concept of the concurrence of the entanglement, we investigate the evolutive properties of the two-qubit entanglement that formed by Heisenberg XXX models under a time-depending external field. For this system, the property of the concurrence that is only dependent on the coupling constant J and total values of the external field is proved. Furthermore, we found that the thermal concurrence of the system under a static random external field is a function of the coupling constant J, temperature T, and the magnitude of external field.
文摘An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byusing SU(2), SU(1,1) Lie algebraic method, respectively. Meanwhile, the eigenstates of the above two models are revealedto be SU(2), SU(1,1) coherent states, respectively. The relation between the usual Bogoliubov Valatin transformationand the algebraic method in a special case is also discussed.
文摘A generalized variable-coefficient algebraic method is appfied to construct several new families of exact solutions of physical interest for (3+1)-dimensional Kadomtsev-Petviashvilli (KP) equation. Among them, the Jacobi elliptic periodic solutions exactly degenerate to the soliton solutions at a certain limit condition. Compared with the existing tanh method, the extended tanh method, the Jacobi elliptic function method, and the algebraic method, the proposed method gives new and more general solutions.
文摘In this study,the potential Kadomtsev-Petviashvili(pKP)equation,which describes the oblique interaction of surface waves in shallow waters,is solved by the new extended direct algebraic method.The results of the study show that by applying the new direct algebraic method to the pKP equation,the behavior of the obliquely interacting surface waves in two dimensions can be analyzed.This article fairly clarifies the behaviors of surface waves in shallow waters.In the literature,several mathematical models have been developed in attempt to study these behaviors,with nonlinear mathematics being one of the most important steps;however,the investigations are still at a level that can be called‘baby steps’.Therefore,every study to be carried out in this context is of great importance.Thus,this study will serve as a reference to guide scientists working in this field.
基金Supported by the Natlonal Natural Science Foundation of China
文摘In this paper the algebraic multi-grid principle is applied to the multilevel moment method, which makes the new multilevel method easier to implement and more adaptive to structure. Moreover, the error spectrum is analyzed, and the reason why conjugate gradient iteration is not a good relaxation scheme for multi-grid algorithm is explored. The numerical results show that our algebraic block Gauss Seidel multi-grid algorithm is very effective.
基金the National Natural Science Foundation of China (No. 19871080)
文摘A class of parallel Rosenbrock methods for differential algebraic equations are presented in this paper. The local truncation errors are defined and the order conditions are established by using the DA-trees and DA-series. The paper also deals with the convergence of the parallel Rosenbrock methods for h -> 0 and states the bounds for the global errors of the methods. Some particular methods are obtained by solving the order equations and a numerical example is given, from which the theoretical orders are actually observed.
基金supported by the National Natural Science Foundation of China(10772025,10932002,10972031)the Beijing Municipal Key Disciplines Fund for General Mechanics and Foundation of Mechanics
文摘The algebraic structure and the Poisson method for a weakly nonholonomic system are studied.The differential equations of motion of the system can be written in a contravariant algebra form and its algebraic structure is discussed.The Poisson theory for the systems which possess Lie algebra structure is generalized to the weakly nonholonomic system.An example is given to illustrate the application of the result.
文摘A class of parallel multisplitting AOR method for solving large scale system of nonlinear equations A φ(x)+Bψ(x)=b was proposed. Under certain conditions, the existence and uniqueness of the solution of this system of nonlinear equations were proved, and the global convergence theory of the new method was set up.
文摘An algebraic diagonalization method is proposed. As two examples, the Hamiltonians of BCS ground stateunder mean-field approximation and XXZ antiferromagnetic model in linear spin-wave frame have been diagonalized byusing SU(2), SU(1,1) Lie algebraic method, respectively. Meanwhile, the eigenstates of the above two models are revealedto be SU(2), SU(1,1) coherent states, respectively. The relation between the usual Bogoliubov Valatin transformationand the algebraic method in a special case is also discussed.
文摘A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta methods, especially, for Radau Ⅰ A, Radau Ⅱ A and Gaussian Runge-Kutta methods.
文摘We propose a continuous analogy of Newton’s method with inner iteration for solving a system of linear algebraic equations. Implementation of inner iterations is carried out in two ways. The former is to fix the number of inner iterations in advance. The latter is to use the inexact Newton method for solution of the linear system of equations that arises at each stage of outer iterations. We give some new choices of iteration parameter and of forcing term, that ensure the convergence of iterations. The performance and efficiency of the proposed iteration is illustrated by numerical examples that represent a wide range of typical systems.
基金The project supported by Natural Science Foundation of Shandong Province of China+2 种基金National Natural Science Foundation of Chinathe Doctor Foundation of the Ministry of Education of China
文摘The dynamical Lie algebraic method is used for the description of statistical mechanics of rotationally inelastic molecule-surface scattering. It can give the time-evolution operators about the low power of and by solving a set of coupled nonlinear differential equations. For considering the contribution of the high power of and , we use the Magnus formula. Thus, with the time-evolution operators we can get the statistical average values of the measurable quantities in terms of the density operator formalism in statistical mechanics. The method is applied to the scattering of (rigid rotor) by a flat, rigid surface to illustrate its general procedure. The results demonstrate that the method is useful for describing the statistical dynamics of gas-surface scattering.
文摘A new general algebraic method is presented to uniformly construct a series of exact solutions for nonlinear evolution equations (NLEEs). For illustration, we apply the new method to shallow long wave approximate equations and successfully obtain abundant new exact solutions, which include rational solitary wave solutions and rational triangular periodic wave solutions. The method is straightforward and concise, and it can also be applied to other nonlinear evolution equations in mathematical physics.