Air-gun arrays are used in marine-seismic exploration. Far-field wavelets in subsurface media represent the stacking of single air-gun ideal wavelets. We derived single air-gun ideal wavelets using near-field wavelets...Air-gun arrays are used in marine-seismic exploration. Far-field wavelets in subsurface media represent the stacking of single air-gun ideal wavelets. We derived single air-gun ideal wavelets using near-field wavelets recorded from near-field geophones and then synthesized them into far-field wavelets. This is critical for processing wavelets in marine- seismic exploration. For this purpose, several algorithms are currently used to decompose and synthesize wavelets in the time domain. If the traveltime of single air-gun wavelets is not an integral multiple of the sampling interval, the complex and error-prone resampling of the seismic signals using the time-domain method is necessary. Based on the relation between the frequency-domain phase and the time-domain time delay, we propose a method that first transforms the real near-field wavelet to the frequency domain via Fourier transforms; then, it decomposes it and composes the wavelet spectrum in the frequency domain, and then back transforms it to the time domain. Thus, the resampling problem is avoided and single air-gun wavelets and far-field wavelets can be reliably derived. The effect of ghost reflections is also considered, while decomposing the wavelet and removing the ghost reflections. Modeling and real data processing were used to demonstrate the feasibility of the proposed method.展开更多
The practice of exploration and production has proved that explosives are excited in different surrounding rocks and the seismic wavelets collected have different characteristics. In this paper, by establishing a nume...The practice of exploration and production has proved that explosives are excited in different surrounding rocks and the seismic wavelets collected have different characteristics. In this paper, by establishing a numerical model of the explosion in the well, using finite element analysis technology for numerical simulation, the simulation calculated the stress structure in the near-source area of the earthquake excitation, and extracted the seismic wavelet. The results show that the simulation seismic wavelet characteristics of different thin interbedded sand and mudstone structures have changed significantly. Through excitation simulation, the amplitude and spectrum information of seismic wavelets can be compared and analyzed, and the excitation parameters can be optimized. .展开更多
In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibi...In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibility and computational efficiency of wavelet multi-resolution method with easy implementation of the finite-difference method. The orthogonal wavelet basis provides a natural framework, which adapt spatial grids to local wavefield properties. Numerical results show usefulness of the approach as an accurate and stable tool for simulation of wave propagation in fluid-saturated porous media.展开更多
An air-gun source is the most commonly used excitation method in off shore seismic exploration.The excitation characteristics of an air-gun source aff ect seismic data quality.Far-field wavelet simulation is an import...An air-gun source is the most commonly used excitation method in off shore seismic exploration.The excitation characteristics of an air-gun source aff ect seismic data quality.Far-field wavelet simulation is an important approach to study these characteristics.Compared to the measured wavelet,far-field wavelet simulation based on a traditional bubble-motion equation and ideal gas wavelet model has some disadvantages,such as a greater amplitude and smaller pulse attenuation velocity.Here,we start from the linear acoustic wave equation in the spherical coordinate system to deduce an improved,simpler bubble-motion equation and develop a Van der Waals gas wavelet model based on this equation.Unlike the existing methods,our method considers the high-pressure environment during actual excitation,heat exchange between the bubble and outside water,and change in the air fl ow at the muzzle.The results show that the far-fi eld wavelet simulated using this model is closer to the measured wavelet than that of the ideal gas wavelet model.At the same time,our method has a more succinct equation and a higher calculation effi ciency.展开更多
A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constra...A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constrained with the lack of effective ways to control blast wave profiles and as a result have a limited performance range.Some wave shaping techniques employed in some facilities are reviewed but often necessitate extensive geometric modifications,inadvertently cause flow anomalies,and/or are only applicable under very specific configurations.This paper investigates controlled venting as an expedient way for waveforms to be tuned without requiring extensive modifications to the driver or existing geometry and could be widely applied by existing and future blast simulation and shock tube facilities.The use of controlled venting is demonstrated experimentally using the Advanced Blast Simulator(shock tube)at the Australian National Facility of Physical Blast Simulation and via numerical flow simulations with Computational Fluid Dynamics.Controlled venting is determined as an effective method for mitigating the impact of re-reflected waves within the blast simulator.This control method also allows for the adjustment of parameters such as tuning the peak overpressure,the positive phase duration,and modifying the magnitude of the negative phase and the secondary shock of the blast waves.This paper is concluded with an illustration of the potential expanded performance range of the Australian blast simulation facility when controlled venting for blast waveform tailoring as presented in this paper is applied.展开更多
Simulation of the temperature field of copier paper in copier fusing is very important for improving the fusing property of reprography. The temperature field of copier paper varies with a high gradient when the copie...Simulation of the temperature field of copier paper in copier fusing is very important for improving the fusing property of reprography. The temperature field of copier paper varies with a high gradient when the copier paper is moving through the fusing rollers. By means of conventional shaft elements, the high gradient temperature variety causes the oscillation of the numerical solution. Based on the Daubechies scaling functions, a kind of wavelet based element is constructed for the above problem. The temperature field of the copier paper moving through the fusing rollers is simulated using the two methods. Comparison of the results shows the advantages of the wavelet finite element method, which provides a new method for improving the copier properties.展开更多
Wavelet has been used as a powerful tool in the signal processing and function approximation recently. This paper presents the application of wavelets for solving two key problems in 3-D audio simulation. First, we em...Wavelet has been used as a powerful tool in the signal processing and function approximation recently. This paper presents the application of wavelets for solving two key problems in 3-D audio simulation. First, we employ discrete wavelet transform (DWT) combined with vector quantization (VQ) to compress audio data in order to reduce tremendous redundant data storage and transmission times. Secondly, we use wavelets as the activation functions in neural networks called feed-forward wavelet networks to approach auditory localization information cues (head-related transfer functions (HRTFs) are used here). The experimental results demonstrate that the application of wavelets is more efficient and useful in 3-D audio simulation.展开更多
Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is es...Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is established to simulate the far-field profile of the coherent arrays. Some important conclusions are obtained. To achieve a higher quality beam, it is necessary to decrease separation between elements, or to increase the element width. Higher brightness can be achieved in the array with larger scale. Emitted wavelength also has an influence on the far-field profile. These analyses can be extended to the future design of coherent vertical cavity surface emitting laser arrays.展开更多
Marine spark sources are widely used in high-resolution marine seismic surveys.The characteristic of a wavelet is a critical part in seismic exploration;thus,the formation and numerical simulation of spark source wave...Marine spark sources are widely used in high-resolution marine seismic surveys.The characteristic of a wavelet is a critical part in seismic exploration;thus,the formation and numerical simulation of spark source wavelets should be explored.In studies on spark source excitation,the acoustic field generated by the interaction between bubbles constitutes the near-field wavelet of a source.Therefore,this interaction should be revealed by studying complex multibubble motion laws.In this study,actual discharge conditions were combined to derive the multibubble equation of motion.Energy conservation,ideal gas equation,and environmental factors in the discharge of spark source wavelets were studied,and the simulation method of an ocean spark source wavelet was established.The accuracy of the simulation calculation method was verified through a comparison of indoor-measured signals using three electrodes and the spark source wavelet obtained in the field.Results revealed that the accuracy of the model is related to the number of electrodes.The fewer the number of electrodes used,the lower will be the model's accuracy.This finding is attributed to the statistical hypothesis factor introduced to eliminate the coupling term of the interaction of the multibubble motion equation.This study presents a method for analyzing the wavelet characteristics of an indoor-simulated spark source wavelet.展开更多
In this paper, we show the construction of orthogonal wavelet basis on the interval [0, 1],using compactly supportted Daubechies function. Forwardly, we suggest a kind of method to deal with the differential operator ...In this paper, we show the construction of orthogonal wavelet basis on the interval [0, 1],using compactly supportted Daubechies function. Forwardly, we suggest a kind of method to deal with the differential operator in view of numerical analysis and derive the appoximation algorithm of wavelet ba-sis and differential operator, which affects on the basis, to functions belonging to L2 [0, 1 ]. Numerical computation indicate the stability and effectiveness of the algorithm.展开更多
Wavelet analysis is one of the mostly new methods of pure and applied mathematics science. In this paper, we use the wavelet method to estimate the hazard function for censoring random variable. We consider the conver...Wavelet analysis is one of the mostly new methods of pure and applied mathematics science. In this paper, we use the wavelet method to estimate the hazard function for censoring random variable. We consider the convergence ratio of given estimator. Also we present the simulation in order to test purpose estimator by calculating the mean integrated squared error (MISE) and average mean squared error (AMSE).展开更多
A sparsifying transform for use in Compressed Sensing (CS) is a vital piece of image reconstruction for Magnetic Resonance Imaging (MRI). Previously, Translation Invariant Wavelet Transforms (TIWT) have been shown to ...A sparsifying transform for use in Compressed Sensing (CS) is a vital piece of image reconstruction for Magnetic Resonance Imaging (MRI). Previously, Translation Invariant Wavelet Transforms (TIWT) have been shown to perform exceedingly well in CS by reducing repetitive line pattern image artifacts that may be observed when using orthogonal wavelets. To further establish its validity as a good sparsifying transform, the TIWT is comprehensively investigated and compared with Total Variation (TV), using six under-sampling patterns through simulation. Both trajectory and random mask based under-sampling of MRI data are reconstructed to demonstrate a comprehensive coverage of tests. Notably, the TIWT in CS reconstruction performs well for all varieties of under-sampling patterns tested, even for cases where TV does not improve the mean squared error. This improved Image Quality (IQ) gives confidence in applying this transform to more CS applications which will contribute to an even greater speed-up of a CS MRI scan. High vs low resolution time of flight MRI CS re-constructions are also analyzed showing how partial Fourier acquisitions must be carefully addressed in CS to prevent loss of IQ. In the spirit of reproducible research, novel software is introduced here as FastTestCS. It is a helpful tool to quickly develop and perform tests with many CS customizations. Easy integration and testing for the TIWT and TV minimization are exemplified. Simulations of 3D MRI datasets are shown to be efficiently distributed as a scalable solution for large studies. Comparisons in reconstruction computation time are made between the Wavelab toolbox and Gnu Scientific Library in FastTestCS that show a significant time savings factor of 60×. The addition of FastTestCS is proven to be a fast, flexible, portable and reproducible simulation aid for CS research.展开更多
In this paper, a 3-D video encoding scheme suitable for digital TV/HDTV (high definition television) is studied through computer simulation. The encoding scheme is designed to provide a good match to human vision. Bas...In this paper, a 3-D video encoding scheme suitable for digital TV/HDTV (high definition television) is studied through computer simulation. The encoding scheme is designed to provide a good match to human vision. Basically, this involves transmission of low frequency luminance information at full frame rate for good motion rendition and transmission of high frequency luminance signal at reduced frame rate for good detail in static images.展开更多
VOF (volume of fluid) method has been used to make the numerical simulation of freak wave come true. The comparisons between the numerical results and linear theoretical results corresponding to Eq.(5) have been c...VOF (volume of fluid) method has been used to make the numerical simulation of freak wave come true. The comparisons between the numerical results and linear theoretical results corresponding to Eq.(5) have been carried out to show that the numerical results have a better exhibition of nonlinear characteristics. Wavelet analysis method has been adopted to investigate the time-frequency energy spectrum of simulation freak waves and the results reveal strong nonlinear interaction enables energy to be transferred to high harmonics during the progress of its formation. Varying water depth can enhance the nonlinear interaction, making much more energy be transferred to high harmonics and freak waves with higher asymmetry be generated.展开更多
Most previous research on areas with abundant rainfall shows that simulations using rainfall-runoff modes have a very high prediction accuracy and applicability when using a back-propagation(BP), feed-forward, multila...Most previous research on areas with abundant rainfall shows that simulations using rainfall-runoff modes have a very high prediction accuracy and applicability when using a back-propagation(BP), feed-forward, multilayer perceptron artificial neural network(ANN). However, in runoff areas with relatively low rainfall or a dry climate, more studies are needed. In these areas—of which oasis-plain areas are a particularly good example—the existence and development of runoff depends largely on that which is generated from alpine regions. Quantitative analysis of the uncertainty of runoff simulation under climate change is the key to improving the utilization and management of water resources in arid areas. Therefore, in this context, three kinds of BP feed-forward, three-layer ANNs with similar structure were chosen as models in this paper.Taking the oasis–plain region traverse by the Qira River Basin in Xinjiang, China, as the research area, the monthly accumulated runoff of the Qira River in the next month was simulated and predicted. The results showed that the training precision of a compact wavelet neural network is low; but from the forecasting results, it could be concluded that the training algorithm can better reflect the whole law of samples. The traditional artificial neural network(TANN) model and radial basis-function neural network(RBFNN) model showed higher accuracy in the training and prediction stage. However, the TANN model, more sensitive to the selection of input variables, requires a large number of numerical simulations to determine the appropriate input variables and the number of hidden-layer neurons. Hence, The RBFNN model is more suitable for the study of such problems. And it can be extended to other similar research arid-oasis areas on the southern edge of the Kunlun Mountains and provides a reference for sustainable water-resource management of arid-oasis areas.展开更多
The air-gun source has important applications as a new, environmentally, green active source in regional scale deep exploration. In the past, the air gun source was used mainly in smallscale, high-resolution shallow o...The air-gun source has important applications as a new, environmentally, green active source in regional scale deep exploration. In the past, the air gun source was used mainly in smallscale, high-resolution shallow oil exploration, but has a lack of adequate research in deep exploration. In order to study the selection of work parameters and field conditions of the air gun source in deep exploration, this paper does the following work: (1) analyze the characteristics of the air gun source using air gun experiments; (2) simulate the air gun signal and air gun-array signal based on the theory of free bubble oscillation to analyze the influence of bubble oscillation and study the wavelet energy and spectrum characteristics needed in deep exploration; (3) on the basis of theoretical simulation, study the influence of work parameters, such as air-gun capacity, work stress and depth on air gun signal and analyze the influence of air-gun array inspired moment and spacing of different air guns on air gun-array signals; and (4) study energy reflection and transmission coefficients for different underwater interfaces, which is very useful for choosing suitable field conditions.展开更多
This paper proposes a method for simulation of non-stationary ground motion processes having the identical statis-tical feature, time-dependent power spectrum, with a given ground motion record, on the basis of review...This paper proposes a method for simulation of non-stationary ground motion processes having the identical statis-tical feature, time-dependent power spectrum, with a given ground motion record, on the basis of review of simu-lation of non-stationary ground motion processes. The method has the following advantages: the sample processes are non-stationary both in amplitude and frequency, and both the amplitude and frequency non-stationarity depend on the target power spectrum; the power spectrum of any sample process does not necessarily accord with the tar-get power spectrum, but statistically, it strictly accords with the target power spectrum. Finally, the method is veri-fied by simulation of one acceleration record in Landers earthquake.展开更多
The new technique that combines wave superposition with the fast Fourier transformation was introduced to simulate the nodal three-dimension relevant wind velocity time series of spatial structures. The wind velocity ...The new technique that combines wave superposition with the fast Fourier transformation was introduced to simulate the nodal three-dimension relevant wind velocity time series of spatial structures. The wind velocity field where the spatial structure is located is assumed to be homogeneous. The wind’s power spectral density is divided into frequency spectral function and coherency function and the spectral functions are transformed as the superposition coefficients. The wavelet analysis has excellent localized characters in both time and frequency domains, which not only makes wind velocity time series analysis more accurate, but also can focus on any detail of the objective signal series. The discrete wavelet transformation was adopted to decompose and reconstruct the discrete wind velocity time series. The stability of wavelet analysis for the wind velocity time series was also proved.展开更多
A new model identification method of hydraulic flight simulator adopting improved panicle swarm optimization (PSO) and wavelet analysis is proposed for achieving higher identification precision. Input-output data of...A new model identification method of hydraulic flight simulator adopting improved panicle swarm optimization (PSO) and wavelet analysis is proposed for achieving higher identification precision. Input-output data of hydraulic flight simulator were decomposed by wavelet muhiresolution to get the information of different frequency bands. The reconstructed input-output data were used to build the model of hydraulic flight simulator with improved particle swarm optimization with mutation (IPSOM) to avoid the premature convergence of traditional optimization techniques effectively. Simulation results show that the proposed method is more precise than traditional system identification methods in operating frequency bands because of the consideration of design index of control system for identification.展开更多
In this paper, we establish a surface electromyography(sEMG) signal model and study the signal decomposition method from noisy background. Firstly, single fiber action potential (SFAP), motor unit action potential (MU...In this paper, we establish a surface electromyography(sEMG) signal model and study the signal decomposition method from noisy background. Firstly, single fiber action potential (SFAP), motor unit action potential (MUAP) and motor unit action potential train(MUAPT) are simulated based on the tripolar signal source model, and then the sEMG is obtained; secondly, the simulated sEMG signal is extracted from the mixed signals that consists of white noises, power frequency interference signal and electrocardio signal by independent component analysis (ICA) algorithms; lastly, the spikes corresponding to each motor unit action potential from the simulated sEMG signals were detected by applying the wavelet transform (WT) method. Simulation results showed that sEMG model could describe the physiological process of sEMG, ICA and WT methods could extract the sEMG signal and its features, which will lay a foundation for further classifying the MUAP.展开更多
基金supported by the Geosciences and Technology Academy of China University of Petroleum(East China)
文摘Air-gun arrays are used in marine-seismic exploration. Far-field wavelets in subsurface media represent the stacking of single air-gun ideal wavelets. We derived single air-gun ideal wavelets using near-field wavelets recorded from near-field geophones and then synthesized them into far-field wavelets. This is critical for processing wavelets in marine- seismic exploration. For this purpose, several algorithms are currently used to decompose and synthesize wavelets in the time domain. If the traveltime of single air-gun wavelets is not an integral multiple of the sampling interval, the complex and error-prone resampling of the seismic signals using the time-domain method is necessary. Based on the relation between the frequency-domain phase and the time-domain time delay, we propose a method that first transforms the real near-field wavelet to the frequency domain via Fourier transforms; then, it decomposes it and composes the wavelet spectrum in the frequency domain, and then back transforms it to the time domain. Thus, the resampling problem is avoided and single air-gun wavelets and far-field wavelets can be reliably derived. The effect of ghost reflections is also considered, while decomposing the wavelet and removing the ghost reflections. Modeling and real data processing were used to demonstrate the feasibility of the proposed method.
文摘The practice of exploration and production has proved that explosives are excited in different surrounding rocks and the seismic wavelets collected have different characteristics. In this paper, by establishing a numerical model of the explosion in the well, using finite element analysis technology for numerical simulation, the simulation calculated the stress structure in the near-source area of the earthquake excitation, and extracted the seismic wavelet. The results show that the simulation seismic wavelet characteristics of different thin interbedded sand and mudstone structures have changed significantly. Through excitation simulation, the amplitude and spectrum information of seismic wavelets can be compared and analyzed, and the excitation parameters can be optimized. .
基金the National Natural Science Foundation of China(No.40774056)Program of Excellent Team in Harbin Institute of Technology
文摘In this paper, we consider numerical simulation of wave propagation in fluidsaturated porous media. A wavelet finite-difference method is proposed to solve the 2-D elastic wave equation. The algorithm combines flexibility and computational efficiency of wavelet multi-resolution method with easy implementation of the finite-difference method. The orthogonal wavelet basis provides a natural framework, which adapt spatial grids to local wavefield properties. Numerical results show usefulness of the approach as an accurate and stable tool for simulation of wave propagation in fluid-saturated porous media.
基金supported by National Natural Science Foundation of China (No. 41674118)
文摘An air-gun source is the most commonly used excitation method in off shore seismic exploration.The excitation characteristics of an air-gun source aff ect seismic data quality.Far-field wavelet simulation is an important approach to study these characteristics.Compared to the measured wavelet,far-field wavelet simulation based on a traditional bubble-motion equation and ideal gas wavelet model has some disadvantages,such as a greater amplitude and smaller pulse attenuation velocity.Here,we start from the linear acoustic wave equation in the spherical coordinate system to deduce an improved,simpler bubble-motion equation and develop a Van der Waals gas wavelet model based on this equation.Unlike the existing methods,our method considers the high-pressure environment during actual excitation,heat exchange between the bubble and outside water,and change in the air fl ow at the muzzle.The results show that the far-fi eld wavelet simulated using this model is closer to the measured wavelet than that of the ideal gas wavelet model.At the same time,our method has a more succinct equation and a higher calculation effi ciency.
基金funded partially by the Australian Government through the Australian Research Council’s Linkage Infrastructure,Equipment and Facilities (LIEF)funding scheme (LE130100133)。
文摘A critical challenge of any blast simulation facility is in producing the widest possible pressure-impulse range for matching against equivalent high-explosive events.Shock tubes and blast simulators are often constrained with the lack of effective ways to control blast wave profiles and as a result have a limited performance range.Some wave shaping techniques employed in some facilities are reviewed but often necessitate extensive geometric modifications,inadvertently cause flow anomalies,and/or are only applicable under very specific configurations.This paper investigates controlled venting as an expedient way for waveforms to be tuned without requiring extensive modifications to the driver or existing geometry and could be widely applied by existing and future blast simulation and shock tube facilities.The use of controlled venting is demonstrated experimentally using the Advanced Blast Simulator(shock tube)at the Australian National Facility of Physical Blast Simulation and via numerical flow simulations with Computational Fluid Dynamics.Controlled venting is determined as an effective method for mitigating the impact of re-reflected waves within the blast simulator.This control method also allows for the adjustment of parameters such as tuning the peak overpressure,the positive phase duration,and modifying the magnitude of the negative phase and the secondary shock of the blast waves.This paper is concluded with an illustration of the potential expanded performance range of the Australian blast simulation facility when controlled venting for blast waveform tailoring as presented in this paper is applied.
文摘Simulation of the temperature field of copier paper in copier fusing is very important for improving the fusing property of reprography. The temperature field of copier paper varies with a high gradient when the copier paper is moving through the fusing rollers. By means of conventional shaft elements, the high gradient temperature variety causes the oscillation of the numerical solution. Based on the Daubechies scaling functions, a kind of wavelet based element is constructed for the above problem. The temperature field of the copier paper moving through the fusing rollers is simulated using the two methods. Comparison of the results shows the advantages of the wavelet finite element method, which provides a new method for improving the copier properties.
文摘Wavelet has been used as a powerful tool in the signal processing and function approximation recently. This paper presents the application of wavelets for solving two key problems in 3-D audio simulation. First, we employ discrete wavelet transform (DWT) combined with vector quantization (VQ) to compress audio data in order to reduce tremendous redundant data storage and transmission times. Secondly, we use wavelets as the activation functions in neural networks called feed-forward wavelet networks to approach auditory localization information cues (head-related transfer functions (HRTFs) are used here). The experimental results demonstrate that the application of wavelets is more efficient and useful in 3-D audio simulation.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61376049,61076044,61107026 and 61204011the Scientific Research Fund Project of Municipal Education Commission of Beijing under Grant No PXM2014-014204-07-000018
文摘Far-field properties dependent on array scale, separation, element width and emitted wavelength are system atically analyzed theoretically and experimentally. An array model based on the finite-difference method is established to simulate the far-field profile of the coherent arrays. Some important conclusions are obtained. To achieve a higher quality beam, it is necessary to decrease separation between elements, or to increase the element width. Higher brightness can be achieved in the array with larger scale. Emitted wavelength also has an influence on the far-field profile. These analyses can be extended to the future design of coherent vertical cavity surface emitting laser arrays.
基金supported by the Geological Survey of China(No.DD20191003)the National Key Research and Development Plan(No.2016YFC0303901)。
文摘Marine spark sources are widely used in high-resolution marine seismic surveys.The characteristic of a wavelet is a critical part in seismic exploration;thus,the formation and numerical simulation of spark source wavelets should be explored.In studies on spark source excitation,the acoustic field generated by the interaction between bubbles constitutes the near-field wavelet of a source.Therefore,this interaction should be revealed by studying complex multibubble motion laws.In this study,actual discharge conditions were combined to derive the multibubble equation of motion.Energy conservation,ideal gas equation,and environmental factors in the discharge of spark source wavelets were studied,and the simulation method of an ocean spark source wavelet was established.The accuracy of the simulation calculation method was verified through a comparison of indoor-measured signals using three electrodes and the spark source wavelet obtained in the field.Results revealed that the accuracy of the model is related to the number of electrodes.The fewer the number of electrodes used,the lower will be the model's accuracy.This finding is attributed to the statistical hypothesis factor introduced to eliminate the coupling term of the interaction of the multibubble motion equation.This study presents a method for analyzing the wavelet characteristics of an indoor-simulated spark source wavelet.
文摘In this paper, we show the construction of orthogonal wavelet basis on the interval [0, 1],using compactly supportted Daubechies function. Forwardly, we suggest a kind of method to deal with the differential operator in view of numerical analysis and derive the appoximation algorithm of wavelet ba-sis and differential operator, which affects on the basis, to functions belonging to L2 [0, 1 ]. Numerical computation indicate the stability and effectiveness of the algorithm.
文摘Wavelet analysis is one of the mostly new methods of pure and applied mathematics science. In this paper, we use the wavelet method to estimate the hazard function for censoring random variable. We consider the convergence ratio of given estimator. Also we present the simulation in order to test purpose estimator by calculating the mean integrated squared error (MISE) and average mean squared error (AMSE).
文摘A sparsifying transform for use in Compressed Sensing (CS) is a vital piece of image reconstruction for Magnetic Resonance Imaging (MRI). Previously, Translation Invariant Wavelet Transforms (TIWT) have been shown to perform exceedingly well in CS by reducing repetitive line pattern image artifacts that may be observed when using orthogonal wavelets. To further establish its validity as a good sparsifying transform, the TIWT is comprehensively investigated and compared with Total Variation (TV), using six under-sampling patterns through simulation. Both trajectory and random mask based under-sampling of MRI data are reconstructed to demonstrate a comprehensive coverage of tests. Notably, the TIWT in CS reconstruction performs well for all varieties of under-sampling patterns tested, even for cases where TV does not improve the mean squared error. This improved Image Quality (IQ) gives confidence in applying this transform to more CS applications which will contribute to an even greater speed-up of a CS MRI scan. High vs low resolution time of flight MRI CS re-constructions are also analyzed showing how partial Fourier acquisitions must be carefully addressed in CS to prevent loss of IQ. In the spirit of reproducible research, novel software is introduced here as FastTestCS. It is a helpful tool to quickly develop and perform tests with many CS customizations. Easy integration and testing for the TIWT and TV minimization are exemplified. Simulations of 3D MRI datasets are shown to be efficiently distributed as a scalable solution for large studies. Comparisons in reconstruction computation time are made between the Wavelab toolbox and Gnu Scientific Library in FastTestCS that show a significant time savings factor of 60×. The addition of FastTestCS is proven to be a fast, flexible, portable and reproducible simulation aid for CS research.
文摘In this paper, a 3-D video encoding scheme suitable for digital TV/HDTV (high definition television) is studied through computer simulation. The encoding scheme is designed to provide a good match to human vision. Basically, this involves transmission of low frequency luminance information at full frame rate for good motion rendition and transmission of high frequency luminance signal at reduced frame rate for good detail in static images.
文摘VOF (volume of fluid) method has been used to make the numerical simulation of freak wave come true. The comparisons between the numerical results and linear theoretical results corresponding to Eq.(5) have been carried out to show that the numerical results have a better exhibition of nonlinear characteristics. Wavelet analysis method has been adopted to investigate the time-frequency energy spectrum of simulation freak waves and the results reveal strong nonlinear interaction enables energy to be transferred to high harmonics during the progress of its formation. Varying water depth can enhance the nonlinear interaction, making much more energy be transferred to high harmonics and freak waves with higher asymmetry be generated.
基金financially supported by the regional collaborative innovation project for Xinjiang Uygur Autonomous Region (Shanghai cooperation organization science and technology partnership project) (2017E01029)the "Western Light" program of the Chinese Academy of Sciences (2017XBQNXZ-B-016)+1 种基金the National Natural Science Foundation of China (41601595, U1603343, 41471031)the State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (G201802-08)
文摘Most previous research on areas with abundant rainfall shows that simulations using rainfall-runoff modes have a very high prediction accuracy and applicability when using a back-propagation(BP), feed-forward, multilayer perceptron artificial neural network(ANN). However, in runoff areas with relatively low rainfall or a dry climate, more studies are needed. In these areas—of which oasis-plain areas are a particularly good example—the existence and development of runoff depends largely on that which is generated from alpine regions. Quantitative analysis of the uncertainty of runoff simulation under climate change is the key to improving the utilization and management of water resources in arid areas. Therefore, in this context, three kinds of BP feed-forward, three-layer ANNs with similar structure were chosen as models in this paper.Taking the oasis–plain region traverse by the Qira River Basin in Xinjiang, China, as the research area, the monthly accumulated runoff of the Qira River in the next month was simulated and predicted. The results showed that the training precision of a compact wavelet neural network is low; but from the forecasting results, it could be concluded that the training algorithm can better reflect the whole law of samples. The traditional artificial neural network(TANN) model and radial basis-function neural network(RBFNN) model showed higher accuracy in the training and prediction stage. However, the TANN model, more sensitive to the selection of input variables, requires a large number of numerical simulations to determine the appropriate input variables and the number of hidden-layer neurons. Hence, The RBFNN model is more suitable for the study of such problems. And it can be extended to other similar research arid-oasis areas on the southern edge of the Kunlun Mountains and provides a reference for sustainable water-resource management of arid-oasis areas.
基金sponsored by the National Natural Science Foundation of China (40730318 and 40574019)the key project of social welfare of the Ministry of Science and Technology,PRC(2005DIA3J117) +1 种基金seismic industry research project (200808002)basic scientific research of Institute of Geophysics CEA(DQJB07A01) ,China
文摘The air-gun source has important applications as a new, environmentally, green active source in regional scale deep exploration. In the past, the air gun source was used mainly in smallscale, high-resolution shallow oil exploration, but has a lack of adequate research in deep exploration. In order to study the selection of work parameters and field conditions of the air gun source in deep exploration, this paper does the following work: (1) analyze the characteristics of the air gun source using air gun experiments; (2) simulate the air gun signal and air gun-array signal based on the theory of free bubble oscillation to analyze the influence of bubble oscillation and study the wavelet energy and spectrum characteristics needed in deep exploration; (3) on the basis of theoretical simulation, study the influence of work parameters, such as air-gun capacity, work stress and depth on air gun signal and analyze the influence of air-gun array inspired moment and spacing of different air guns on air gun-array signals; and (4) study energy reflection and transmission coefficients for different underwater interfaces, which is very useful for choosing suitable field conditions.
基金National Natural Science Foundation of China (50378063) and Excellent Young Teachers Program of Ministry of Education.
文摘This paper proposes a method for simulation of non-stationary ground motion processes having the identical statis-tical feature, time-dependent power spectrum, with a given ground motion record, on the basis of review of simu-lation of non-stationary ground motion processes. The method has the following advantages: the sample processes are non-stationary both in amplitude and frequency, and both the amplitude and frequency non-stationarity depend on the target power spectrum; the power spectrum of any sample process does not necessarily accord with the tar-get power spectrum, but statistically, it strictly accords with the target power spectrum. Finally, the method is veri-fied by simulation of one acceleration record in Landers earthquake.
文摘The new technique that combines wave superposition with the fast Fourier transformation was introduced to simulate the nodal three-dimension relevant wind velocity time series of spatial structures. The wind velocity field where the spatial structure is located is assumed to be homogeneous. The wind’s power spectral density is divided into frequency spectral function and coherency function and the spectral functions are transformed as the superposition coefficients. The wavelet analysis has excellent localized characters in both time and frequency domains, which not only makes wind velocity time series analysis more accurate, but also can focus on any detail of the objective signal series. The discrete wavelet transformation was adopted to decompose and reconstruct the discrete wind velocity time series. The stability of wavelet analysis for the wind velocity time series was also proved.
基金Sponsored by the National 985 Project Foundation of China
文摘A new model identification method of hydraulic flight simulator adopting improved panicle swarm optimization (PSO) and wavelet analysis is proposed for achieving higher identification precision. Input-output data of hydraulic flight simulator were decomposed by wavelet muhiresolution to get the information of different frequency bands. The reconstructed input-output data were used to build the model of hydraulic flight simulator with improved particle swarm optimization with mutation (IPSOM) to avoid the premature convergence of traditional optimization techniques effectively. Simulation results show that the proposed method is more precise than traditional system identification methods in operating frequency bands because of the consideration of design index of control system for identification.
基金The open project of the State Key Laboratory of Robotics and System(HIT)the open project of the State Key Laboratory of Cognitive Neuroscience and Learning and the Natural science fund for colleges and universities in Jiangsu Province+2 种基金 grant number: 10KJB510003the natural science fund in Changzhou City grant number: CJ20110023
文摘In this paper, we establish a surface electromyography(sEMG) signal model and study the signal decomposition method from noisy background. Firstly, single fiber action potential (SFAP), motor unit action potential (MUAP) and motor unit action potential train(MUAPT) are simulated based on the tripolar signal source model, and then the sEMG is obtained; secondly, the simulated sEMG signal is extracted from the mixed signals that consists of white noises, power frequency interference signal and electrocardio signal by independent component analysis (ICA) algorithms; lastly, the spikes corresponding to each motor unit action potential from the simulated sEMG signals were detected by applying the wavelet transform (WT) method. Simulation results showed that sEMG model could describe the physiological process of sEMG, ICA and WT methods could extract the sEMG signal and its features, which will lay a foundation for further classifying the MUAP.